Борис Бирюков - Жар холодных числ и пафос бесстрастной логики
Построение логической теории высказываний в видь дедуктивной системы очерченного или родственного типа — как исчисления высказываний — ценно не само по себе (оно, как это сразу видно, не дает чего-либо принципиально нового по сравнению с булевой алгеброй, интерпретируемой на высказываниях), а как база для развертывания более богатой логическими средствами теории дедукции — исчисления предикатов. А для этой теории нельзя дать интерпретацию ее выражений с помощью конечных таблиц, и поэтому изучение свойств исчисления предикатов становится трудным делом. Между тем без этой логической теории нельзя и думать о формальном представлении большинства математических теорий и прежде всего арифметики.
Построение исчисления предикатов, в которое исчисление высказываний входит как часть, составляет выдающуюся заслугу Фреге в логике. Исчисление высказываний есть логическая теория, средствами которой анализ высказываний может доводиться только до элементарных высказываний (типа «Треугольник имеет три угла» или «Вода кипит при 50 градусах Цельсия»), истинностное значение которых можно установить непосредственно — исходя из определения понятий («треугольник», «угол») или путем обращения к наблюдению или эксперименту. Но уже такое простое рассуждение, как вывод: «Все люди смертны, Сократ —человек, следовательно, Сократ смертен», в котором индивидуальный объект подводится под общее положение, не укладывается в схемы этого исчисления.
Для формального анализа этой и подобных конструкций нужна более мощная логическая система, система, некоторые выражения которой можно было бы интерпретировать как предикаты — свойства предметов («быть смертным», «быть натуральным числом», «быть человеком» и т. п.) и отношения между предметами («любит», «больше», «лежит между» я т. п.) — и в которой имеются средства для «переработки» предикатов в высказывания (передаваемые в разговорном языке такими выражениями, как «всякий», «каждый», «все», «некоторые», «существует» или «существуют» и т. п.; так, присоединяя выражение «существуют» к предикату «натуральное число, большее пяти», мы получаем высказывание «Существуют натуральные числа, большие пяти»).
Книга Фреге «Запись в понятиях» открыла новую главу в истории логической формализации. В ней впервые было дано дедуктивное построение логики как системы, определяемой аксиомами и правилами вывода. В этой книге содержалось изложение разработанного автором искусственного логического языка. Впоследствии, внеся в него некоторые изменения, Фреге использовал его в своей главной работе «Основные законы арифметики».
В этих трудах Фреге формализовал логику предикатов, которая до этого оставалась в основном в компетенции традиционной логической теории, пользующейся общеязыковыми средствами (это приводило к тому, что научно освоенной оказывалась лишь очень ограниченная часть логики свойств и отношений). В дальнейшем мы столкнемся ближе с языком исчисления предикатов и законами получения верных (доказуемых) формул (теорем) этого исчисления.
В связи с именем Фреге часто говорят о «логицизме» — одном из трех главных направлений философии математики начала нашего века, провозгласившем, что математика есть часть логики. Действительно, считая арифметику фундаментом математического анализа, Фреге полагал, что если ее удастся обосновать» то будет обоснована значительная часть математики. При этом обоснование Фреге понимал как выражение через что-то более надежное, не вызывающее сомнений. Этим более надежным была для Фреге логика.
Установка Фреге на чисто логическое обоснование математики лежала вполне в русле господствовавшего в тогдашней математике теоретико-множественного мировоззрения. Это объясняется тем, что между логикой, принципы которой были заложены Аристотелем — и которая называется классической логикой — и теорией множеств (теорией классов объектов) существует глубокая связь и далеко идущий параллелизм.
В самом деле, как мы видели в главе 3, теория основных операций над множествами — логика классов—изоморфна логике высказываний. Одни и те же умозаключения (например, модус Celarent, см. с. 44—45 и 63—64) могут быть представлены как в одной, так а в другой теории. Определяя операции над множествами и отношения между ними, мы прибегаем к логическим понятиям. Мы говорим, например: «Элемент x принадлежит пересечению двух множеств множеств М1 и М1, если, и только если, он принадлежит множеству М1 и принадлежит множеству М2(употребляем операцию конъюнкции); «Элемент x принадлежит объединению множеств М1 и М2 если он принадлежит множеству М1 или принадлежит множеству М2(употребляем дизъюнкцию); «Множество M1 включается во множество M2 если для всякого элемента x из принадлежности его множеству M1 следует его принадлежность множеству М2» (используем понятие логического следования и обобщение «для всякого», соответствующее оператору исчисления предикатов, называемому квантором общности); «Множества M1 и M2 равны, если для всякого элемента x этот элемент принадлежит множеству M1 тогда, и только тогда, когда он принадлежит множеству М2» (употребляем эквиваленцию и квантор общности). Наконец, на множества можно смотреть как на объемы понятий, или предикатов, то есть считать, с одной стороны, что всякое свойство или одноместный предикат (например, «быть поэтом», «быть натуральным числом» и т. д.) определяет некоторое множество предметов (поэтов, натуральных чисел и пр.), всякое двучленное отношение (например, «число x больше числа y») определяет множество пар предметов, находящихся в этом отношении, и то же самое для отношения между любым конечным числом членов, а с другой стороны — что по всякому множеству (предметов, двоек, троек и т. п. предметов) можно построить соответствующий предикат — предикат «быть элементом данного множества».
Как, опираясь на этот параллелизм и взаимосвязь множеств и предикатов, определить натуральные числа? Подход Фреге состоял в следующем[22] (весьма родственное, но чисто теоретико-множественное определение натуральных чисел предложил Кантор[23]). Исходным является понятие взаимно однозначного соответствия между элементами двух произвольных множеств (заметим, что при этом не используется никаких «числовых» понятий, даже единицы). Множества рассматриваются как порождаемые некоторыми одноместными предикатами. Далее вводится понятие «равнообъемности» предикатов. Два предиката, порождающие множества, между элементами которых можно установить взаимно однозначное соответствие, называются равнообъемыми.
Например, предикаты «быть изобретателем математического анализа» и «быть спутником Марса» равнообъемны, поскольку можно установить взаимно однозначное соответствие: Ньютон — Фобос, Лейбниц — Деймос. Отношение равнообъемности является отношением типа равенства (отношением, аналогичным отношению, скажем, равенства по весу), а потому разбивает все множество предикатов на непересекающиеся подмножества, в каждом из которых оказываются предикаты одного и того же объема (подобно тому, как отношение равенства по весу разбивает все множество тел на непересекающиеся подмножества тел, имеющих одинаковый вес). Если некоторое множество равнообъемных предикатов содержит предикаты конечного объема, то объем любого из этих предикатов объявляется некоторым натуральным числом. Подробнее, процедура определения состоит в следующем. Нулем объявляется объем предиката х ≠ х, который пуст. Это число можно определить и на языке свойств, сказав: число нуль — это свойство быть множеством, задаваемым предикатом, равнообъемным предикату x ≠ x. Единицей объявляется свойство быть множеством, задаваемым предикатом, равнообъемным какому-либо предикату, в объем которого входит единственный предмет, скажем, предикату «быть Солнцем». Чтобы не возникло впечатления, что единица здесь определяется через самое себя («единственный предмет»), можно вместо предиката «быть Солнцем» взять предикат «быть пустым множеством» (объем которого состоит из единственного предмета — пустое множество только одно) и определить: «Единица есть свойство множества, задаваемого предикатом «быть пустым множеством»». Число два тогда определяется как свойство множества. задаваемого предикатом «х есть предмет, удовлетворяющий либо свойству х ≠ х, либо свойству быть пустым множеством» и т. д. Заметим, что, определяя на этом пути натуральные числа, можно поступить и иначе: считать натуральными числами сами множества равнообъемных конечных множеств.
Как смотреть на это определение? Разумное основание Для данного подхода имеется. Фактически мы хотим определить здесь натуральное число как нечто, присущее всем Равночисленным множествам. Скажем, число два это не есть две утки, два яблока и т. д., а есть то общее, что характеризует все пары предметов. Можно сказать и проще: число два есть и две утки, и два яблока, и т. д.