Kniga-Online.club
» » » » Альберт Виолант-и-Хольц - Том 9. Загадка Ферма. Трехвековой вызов математике

Альберт Виолант-и-Хольц - Том 9. Загадка Ферма. Трехвековой вызов математике

Читать бесплатно Альберт Виолант-и-Хольц - Том 9. Загадка Ферма. Трехвековой вызов математике. Жанр: Математика издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Обложка одного из изданий «Арифметики» Диофанта, опубликованного в 1670 году сыном Ферма уже после смерти отца. В это издание были включены комментарии, сделанные знаменитым математиком.

* * *

Важность «Арифметики»

Важность работы Диофанта сложно переоценить. Предложенные им задачи бросают вызов гениальности и творчеству и воспевают красоту математики. Хотя Диофант не применял сложные алгебраические обозначения, он ввел в употребление некоторые символы. Так, он обозначал сокращениями неизвестную и степени неизвестной. Это позволило упростить запись уравнений. Он также использовал сокращение, обозначавшее равенство. Поэтому его работа стала важным шагом в переходе от словесной к символьной алгебре.

Также очевидно, что Диофант уделял больше внимания частным, а не общим случаям. Очевидно, переход к общим случаям был слишком большим шагом вперед. Однако некоторые из методов Диофанта можно легко распространить на более общие случаи. Тем не менее, ему явно не хватало средств алгебраической нотации, чтобы записать более общие методы. Например, Диофант мог обозначать только одну неизвестную, и всякий раз, когда в решении появлялись различные неизвестные, он называл их «первая неизвестная», «вторая неизвестная», «третья неизвестная» и так далее. У него в распоряжении также не было символа для обозначения произвольного числа n, поэтому выражение (6+ 1)/(n2 + n) требовалось записывать словами:

«Число, умноженное на шесть и увеличенное на один, которое делится на сумму его квадрата и этого же числа». Нетрудно видеть, что записывать сложные выражения в подобном виде было непросто. Лишь Виет сделал решающий шаг к современной алгебраической нотации.

* * *

АЛГЕБРАИЧЕСКАЯ НОТАЦИЯ ВИЕТА

Сегодняшнюю математику нельзя представить без символьной нотации. Но она формировалась в течение многих тысяч лет. Буквенные обозначения в своих доказательствах использовали уже Диофант и Евклид, но окончательный переход к алгебраической нотации осуществил Виет. В своей книге In artem analyticem isagoge («Введение в аналитическое искусство»), написанной в 1591 году, Виет уделил особое внимание алгебраическим методам и привел их систематическое изложение. Его метод контрастировал с синтетическим методом, который использовали греки для доказательства теорем. Он применил новый подход к тому, что было известно на тот момент, и стремился, чтобы ни одна математическая задача не осталась нерешенной. Тот же Виет без тени сомнения утверждал, что благодаря алгебре будет возможно решить все задачи. Развитие математической нотации можно оценить на следующем примере. Здесь записан один и тот же многочлен в нотации Диофанта, нотации Виета и современным способом.

Способ записи Диофанта:

Способ записи Виета: CC CQ + QQCQN + 1

Современная нотация: х6 — х5 + х4 — х3  + х2 — х + 1.

* * *

Распространение заветов Диофанта

Европейские математики начали открывать для себя наследие Диофанта усилиями немецкого математика и астронома Иоганна Мюллера, также известного как Региомонтан. Около 1463 года он обнаружил копию «Арифметики» в Венеции и обратил внимание, что «никто до сей поры не перевел с греческого на латынь тринадцать книг Диофанта, в которых сокрыт истинный цвет математики». Примерно в 1570 году Рафаэль Бомбелли перевел часть «Арифметики», но его труд так и не был опубликован. Тем не менее он использовал многие задачи Диофанта в своей книге под названием «Алгебра». В 1575 году Вильгельм Гольцман, известный также под именем Ксиландр, опубликовал в Базеле книгу «Сочинения Диофанта Александрийского в шести книгах» (Diophanti Alexandrini Rerum libri sex) — первый перевод книги Диофанта на латынь. В 1621 году Баше де Мезириак сделал еще один шаг, опубликовав в Париже новый перевод под следующим названием: «"Арифметика" Диофанта Александрийского в шести книгах и одна книга о многоугольных числах, переведенные с латыни и греческого, с иллюстрациями» (Diophanti Alexandrini Arithmeticorum libri sex, et de Numeris multangulis liber unus. Nunc primun graece et latini editi atque absolutissimis commentariis illustrati). Это издание содержит исходный текст на греческом, его перевод на латынь, а также ряд примечаний и комментариев.

Портрет Йоганна Мюллера, который в XV веке обнаружил копию труда Диофанта.

* * *

ГИПАТИЯ АЛЕКСАНДРИЙСКАЯ

Жизнь Гипатии окутана легендами. О точной дате ее рождения ведутся споры. Год смерти известен точно — 415 год, но историки расходятся во мнениях относительно того, сколько лет было Гипатии на момент смерти. Ее отец, Теон, был известным ученым и преподавателем математики в Александрии. Он воспитал в Гипатии любовь к наукам. Он также рассказал ей о мировых религиях и обучил физическим упражнениям, чтобы сохранять тело сильным и здоровым. Гипатия очень быстро стала превосходным оратором, и многие приезжали из других городов, чтобы обучиться у нее ораторскому искусству. Среди ее учеников были язычники и христиане. Они принадлежали к аристократии, некоторые занимали очень высокие посты. Философ Дамаский писал, что «достигнув высочайшего мастерства в искусстве обучения, она также была справедливой и мудрой и всю свою жизнь оставалась невинной».

Гипатия изучала астрономию, астрологию и математику. Синезий в письмах упоминает, что Гипатия, будучи его ученицей, усовершенствовала астролябию и изобрела гидрометр. Она также была редактором и автором комментариев для множества книг по математике, среди которых отметим «Конические сечения» Аполлония и «Арифметику» Диофанта. Благодаря ее усилиям эти книги стали доступнее читателям и сохранились на протяжении многих веков. В 415 году Гипатия была убита во время столкновений между последователями епископа Кирилла и префекта Ореста, ее бывшего ученика.

На этом фрагменте картины Рафаэля «Афинская школа» на переднем плане изображен Пифагор, а чуть дальше — Гапатия Александрийская в белой тунике.

* * *

Перевод Баше дал огромный толчок развитию теории чисел. Тот же Баше решил диофантовы уравнения первой степени вида ах + by = cz. Позднее Альбер Жиро идеально точно выделил целые числа, представимые в виде суммы двух квадратов. Наконец, Ферма изобрел новый общий метод доказательства, так называемый метод бесконечного спуска, и применил его для доказательства своей теоремы при n = 4.

До выхода перевода Баше теория чисел не вызывала интереса математиков. Считалось, что задачи теории чисел — не более чем математические курьезы, любопытные, но носящие частный характер. Объектами всеобщего внимания в то время были геометрия и анализ. Но после публикации трудов Ферма теория чисел быстро привлекла к себе интерес наиболее выдающихся математиков: Виета, Декарта, Гаусса, Эйлера, Якоби, Лагранжа, Лежандра, Дирихле, Дедекинда, Кронекера и многих других. Это лишь часть обширного перечня ученых, которые занимались исследованиями теории чисел — «королевы математики», как считал Гаусс.

Портрет математика XVIII века Жозефа Луи Лагранжа, который изучал различные задачи, поставленные Ферма.

* * *

РЕШЕНИЕ ДИОФАНТОВЫХ УРАВНЕНИЙ ПЕРВОЙ СТЕПЕНИ

Диофантовы уравнения имеют целые коэффициенты и целые решения. Сначала удалось решить диофантовы уравнения первой степени, что позволило найти решения многих практических задач. Рассмотрим один наглядный пример. Допустим, что наш сосед отправился за покупками и хочет купить растительного масла на целый год вперед. Вернувшись из магазина, он сказал, что нашел два сорта масла — один по 3,24 евро за литр, другой по 4,50 евро за литр — и что всего он потратил 43,20 евро. В ответ мы говорим, что И бутылок будет явно недостаточно на весь год.

Как мы узнали, сколько бутылок купил сосед, если мы даже не открывали пакеты, которые он принес из магазина? Обозначим за х число бутылок стоимостью 3,24 евро, за у — число бутылок по 4,50 евро. Выразим потраченную сумму с помощью уравнения и получим 3,24х + 4,50у = 43,20. Это уравнение имеет дробные коэффициенты, но если умножить обе части на 100, получим уравнение с целыми коэффициентами: 324х + 450у = 4320. Следовательно, нужно найти такие х и у, для которых это равенство было бы верным. Они должны быть целыми, так как число бутылок каждого сорта обязательно целое. Необходимое и достаточное условие наличия целых корней уравнения с целыми коэффициентами таково: наибольший общий делитель коэффициентов при неизвестных должен быть делителем свободного члена. Наибольший общий делитель 324 и 450 равен 18. 4320 нацело делится на это число. Поделив обе части уравнения на 18, получим 18х + 25у = 240. Теперь мы можем составить таблицу решений для этого уравнения. Для этого будем присваивать х целые значения, начиная с 0, и находить соответствующие значения у, которые удовлетворяют уравнению, то есть такие, что у = (240 — 18х)/25.

Перейти на страницу:

Альберт Виолант-и-Хольц читать все книги автора по порядку

Альберт Виолант-и-Хольц - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Том 9. Загадка Ферма. Трехвековой вызов математике отзывы

Отзывы читателей о книге Том 9. Загадка Ферма. Трехвековой вызов математике, автор: Альберт Виолант-и-Хольц. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*