Альберт Виолант-и-Хольц - Том 9. Загадка Ферма. Трехвековой вызов математике
Тем не менее, не отрицая всю важность доказательства последней теоремы Ферма, стоит отметить, что оно намного важнее как своеобразный катализатор будущих исследований. В течение многих веков задача Ферма возвышалась, словно неприступная цитадель, и копья математиков разбивались о ее стены. Уверенность Уайлса в том, что он практически в одиночку сможет решить задачу такого масштаба, несомненно, вдохновит других посвятить себя решению других открытых задач, которые сейчас представляются нерешаемыми.
Что говорит по этому поводу сам Уайлс? Из-за его природной скромности не стоит ожидать от него каких-то громких фраз. Однако эту книгу можно закончить только его словами, которые он произнес, когда было окончательно утверждено его второе доказательство и сбылась мечта всей его жизни:
«Мне выпало счастье осуществить в моей взрослой жизни то, что было мечтой моего детства. Я знаю, что это редкая удача, но если в зрелом возрасте вам представляется возможность заниматься чем-то таким, что значит для вас так много, то это занятие служит для вас наградой более высокой, чем что-либо еще. Доказав великую теорему Ферма, я не мог не ощутить потери, но в то же время меня охватило чувство бескрайней свободы. На протяжении восьми лет я был настолько поглощен ее доказательством, что не мог думать ни о чем другом. Я думал о теореме Ферма все время — с утра до ночи. Для размышлений об одном и том же — срок очень долгий. Теперь эта одиссея подошла к концу. Мой разум обрел покой».
Приложение
Фигурные числа
Фигурное число — это число, которое может быть представлено в виде точек, расположенных в форме правильного многоугольника. Эти числа долгое время служили объектом пристального внимания математиков. Греки приписывали им магические свойства, связанные с их особой формой, а Диофант посвятил им отдельный труд.
Треугольное число можно представить в виде равностороннего треугольника:
Получим последовательность 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91,105…
Общая формула приведена справа от иллюстрации.
Квадратные числа можно представить в форме квадратов:
Получим последовательность 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225… Общая формула — n2.
Пятиугольные числа можно представить в виде пятиугольников:
Получим последовательность 1, 5, 12, 22, 35, 51, 70, 92, 117, 145, 176, 210, 247, 287, 330… Общая формула приведена на рисунке.
Аналогично можно получить шестиугольные, семиугольные числа и так далее.
Ферма первым понял, что любое натуральное число можно представить как сумму максимум трех треугольных, четырех квадратных, пяти пятиугольных чисел и так далее. Данные, представленные в следующей таблице, позволяют убедиться, что это соотношение выполняется для треугольных и пятиугольных чисел.
Библиография
ACZEL, A.D., Elúltimo teorema de Fermat, México, Fondo de Cultura Económica, 2004.
GHEVERGHESE, G.J., La cresta del pavo real: las matemáticas у sus raíces no europeas, Madrid, Pirámide, 1996.
MAHONEY, M.S., The mathematical Career of Pierre de Fermat, 1601–1665 (La actividad matemática de Pierre de Fermat, 1601–1665), Princeton University Press, 1994.
RlBENBOIM, P., Fermat* s Last Theorem for Amateurs (Elúltimo teorema de Fermat para aficionados)t Nueva York, Springer Verlag, 1999.
SlNGH, S., El enigma de Fermat у Barcelona, Planeta, 1998.
* * *
Научно-популярное издание
Выходит в свет отдельными томами с 2014 года
Мир математики
Том 9
Альберт Виолант-и-Хольц
Загадка Ферма. Трехвековой вызов математике
РОССИЯ
Издатель, учредитель, редакция:
ООО «Де Агостини», Россия
Юридический адрес: Россия, 105066, г. Москва, ул. Александра Лукьянова, д. 3, стр. 1
Письма читателей по данному адресу не принимаются.
Генеральный директор: Николаос Скилакис
Главный редактор: Анастасия Жаркова
Старший редактор: Дарья Клинг
Финансовый директор: Наталия Василенко
Коммерческий директор: Александр Якутов
Менеджер по маркетингу: Михаил Ткачук
Менеджер по продукту: Яна Чухиль
Для заказа пропущенных книг и по всем вопросам, касающимся информации о коллекции, заходите на сайт www.deagostini.ru, по остальным вопросам обращайтесь по телефону бесплатной горячей лнннн в России:
8-800-200-02-01
Телефон горячей линии для читателей Москвы:
8-495-660-02-02
Адрес для писем читателей: Россия, 170100, г. Тверь, Почтамт, а/я 245, «Де Агостини», «Мир математики»
Пожалуйста, указывайте в письмах свои контактные данные для обратной связи (телефон или e-mail).
Распространение:
ООО «Бурда Дистрибьюшен Сервисиз»
УКРАИНА
Издатель и учредитель:
ООО «Де Агостини Паблишинг» Украина
Юридический адрес: 01032, Украина, г. Киев, ул. Саксаганского, 119
Генеральный директор: Екатерина Клименко
Для заказа пропущенных книг и по всем вопросам, касающимся информации о коллекции, заходите на сайт www.deagostini.ua, по остальным вопросам обращайтесь по телефону бесплатной горячей линии в Украине:
0-800-500-8-40
Адрес для писем читателей:
Украина, 01033, г. Киев, a/я «Де Агостини», «Мир математики»
Украïна, 01033, м. Кiев, а/с «Де Агостiнi»
БЕЛАРУСЬ
Импортер и дистрибьютор в РБ:
ООО «Росчерк», 220037, г. Минск, ул. Авангардная, 48а, литер 8/к,
тел./факс: +375 17 331 94 27
Телефон «горячей линии» в РБ:
+ 375 17 279-87-87 (пн-пт, 9.00–21.00)
Адрес для писем читателей:
Республика Беларусь, 220040, г. Минск, а/я 224, ООО «Росчерк», «Де Агостини», «Мир математики»
КАЗАХСТАН
Распространение: ТОО «КГП «Бурда-Алатау Пресс»
Издатель оставляет за собой право увеличить рекомендуемую розничную цену книг. Издатель оставляет за собой право изменять последовательность заявленных тем томов издания и их содержание.
Отпечатано в соответствии с предоставленными материалами в типографии:
Grafica Veneta S.p.A Via Malcanton 2
35010 Trebaseleghe (PD) Italy
Подписано в печать: 05.10.2013
Дата поступления в продажу на территории России: 18.03.2014
Формат 70 х 100 / 16. Гарнитура «Academy».
Печать офсетная. Бумага офсетная. Печ. л. 5.
Усл. печ. л. 6,48.
Тираж: 200 000 экз.
© Albert Violant i Holz, 2010 (текст)
© RBA Collecionables S.A., 2012
© ООО «Де Агостини», 2014
ISBN 978-5-9774-0682-6
ISBN 978-5-9774-0625-3 (т. 9)
Примечания
1
Цитаты из Уайлса на протяжении всей книги, если не указано иное, взяты из упомянутой программы («Доказательство», NOVA, 28 октября 1997 года, служба Public Broadcasting System, PBS).
2
Вольный перевод цитаты из книги Амира Акселя «Последняя теорема Ферма». Эта глава во многом основана на этой книге о теореме Ферма и ее доказательстве, которая уже успела стать классической.
3
Оригинальное название: At Last, Shout of «Eureka!» in Age-Old Math Mystery.