Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
Как только энзим и его субстрат оказываются соединены, равновесие электрических зарядов нарушается; электроны и протоны плавают вокруг сцепленных молекул, пока равновесие не восстановится. К тому времени, как это случается, в субстрате могут произойти значительные химические изменения. Примером таких изменений является «сварка», в результате которой небольшая стандартная молекула присоединяется к нуклеотиду, аминокислоте или другой обычной клеточной молекуле; цепочка ДНК может быть разрушена в определенном месте, какая-то часть молекулы может оказаться «отрезанной» и так далее. На самом деле, био-энзимы производят на молекулах операции, весьма похожие на типографские операции, производимые типо-энзимами. Однако большинство энзимов вместо последовательности заданий выполняют только какое-нибудь одно. Другая значительная разница между типоэнзимами и биоэнзимами заключается в том, что типоэнзимы действуют только на цепочки, в то время как биоэнзимы могут действовать на ДНК, РНК, другие белки, рибосомы, клеточные мембраны — короче, на все, что имеется в клетке. Иными словами, энзимы — это универсальные механизмы клеточных операций. Существуют энзимы соединяющие, энзимы разделяющие, энзимы изменяющие, энзимы активирующие и дезактивирующие, энзимы копирующие, чинящие, разрушающие…
Некоторые из самых сложных процессов в клетке включают каскады, в которых одна-единственная молекула запускает производство определенного типа энзима; этот процесс начинается, и энзимы, сходящие «с конвейера», открывают новую химическую дорогу, ведущую к производству второго типа энзима. Этот процесс может продолжаться на трех или четырех уровнях, каждый новый тип энзима, в свою очередь, запускает в действие процесс создания следующего типа энзима. В конце производится поток копий последнего типа энзима, после чего все копии принимаются за свои дела — отрезать «чужую» ДНК, помочь в строительстве какой-нибудь аминокислоты, в которой нуждается клетка, и так далее.
Нужда в достаточно сильной автономной системеПостараемся описать то, как природа решила типогенетическую головоломку «Какая цепочка ДНК может заведовать собственным воспроизводством?» Безусловно, не каждая цепочка ДНК является авто-репом. Ключ к загадке — в том, что любая цепочка, желающая заняться самовоспроизводством, должна содержать инструкции для сборки именно тех энзимов, которые смогут выполнить эту задачу. Ожидать, что отдельная цепочка ДНК сможет оказаться авторепом, нереально, поскольку для «вытаскивания» этих потенциальных белков из ДНК необходимы не только рибосомы, но и полимеразы РНК, строящие мРНК, которые затем переносятся к рибосомам. Таким образом, мы должны предположить существование «минимальной системы автономии», достаточно сильной, чтобы обеспечить возможность транскрипции и трансляции. Эта минимальная система будет состоять из (1) нескольких белков, таких, например, как полимераза РНК, позволяющая сделать мРНК на основе ДНК, и (2) нескольких рибосом.
Как самовоспроизводится ДНКВыражения «достаточно сильная система автономии» и «достаточно мощная формальная система» звучат очень похоже и это сходство далеко не случайно. Одно из этих выражений содержит условие для возможного авторепа, а другое — условие для возможного авто-рефа. На самом деле, мы видим здесь одно и то же явление, только в разных одеждах — вскоре мы объясним это подробнее. Но прежде давайте закончим описание того, как может самовоспроизвестись цепочка ДНК.
ДНК должна содержать код тех белков, которые будут ее воспроизводить. Существует очень эффективный и изящный способ воспроизвести двойную спираль ДНК, состоящую из двух комплементарных цепочек. Это происходит в два шага:
(1) отделить цепочки друг от друга,
(2) присоединить новую цепочку к каждой из получившихся отдельных цепочек.
Этот процесс создает две новые двойные цепочки ДНК, каждая из которых идентична первоначальной. Если мы будем пользоваться этой идеей в нашем решении, нам потребуется набор белков, закодированных в самой ДНК, которые смогут выполнить эти два шага.
Считается, что в клетке эти шаги осуществляются одновременно, это происходит координированно и требует присутствия трех основных энзимов эндонуклеазы ДНК, полимеразы ДНК и лигазы ДНК. Первый — «открывающий энзим», разделяющий цепочки, словно две части застежки «молнии». Потом вступают в действие два остальных энзима. Полимераза ДНК — это энзим копирования и передвижения; он медленно передвигается вдоль коротких цепочек ДНК, воспроизводя их дополнения методом, похожим на типогенетический. Для этого он пользуется материалом-сырцом — а именно, нуклеотидами, плавающими вокруг в цитоплазме. Поскольку это действие происходит «скачкообразно» (каждый скачок — это сначала растаскивание цепочек и затем их воспроизводство), возникают короткие «паузы», заполняемые при помощи лигазы ДНК. Этот процесс повторяется снова и снова. Этот отлаженный трехэнзимный аппарат передвигается аккуратно по всей длине молекулы ДНК, пока ее цепочки не окажутся полностью разделенными и скопированными. В результате получаются две копии первоначальной ДНК.
Сравнение метода самовоспроизводства ДНК с квайнированиемОбратите внимание, что для энзимного воздействия на цепочку ДНК совершенно неважно, что информация для этого процесса хранится в самой ДНК; энзимы просто выполняют свои задачи по передвижению символов, точно так же, как правила вывода в системе MIU. Им совершенно все равно то, что в какой-то момент они копируют те самые гены, в которых закодированы они сами. ДНК является для них эталоном, лишенным собственного значения и интереса.
Это можно сравнить с тем, как Квайново высказывание дает инструкции по самовоспроизводству. Там у нас тоже было что-то вроде «двойной цепочки» — две копии одной и той же информации, одна из которых действовала как команда, а другая — как эталон. Процесс в ДНК отдаленно напоминает эту ситуацию, поскольку три энзима (эндонуклеаза ДНК, полимераза ДНК и лигаза ДНК) закодированы только в одной из цепочек, которая, таким образом, действует как программа, в то время как другая цепочка — всего лишь эталон. Это сравнение приблизительно, поскольку в процессе копирования обе цепочки используются как эталоны. Все же эта аналогия очень интересна. Существует биохимическая аналогия дихотомии «использование — упоминание»: когда ДНК используется как последовательность символов для копирования, она похожа на упоминание о типографских символах; когда ДНК диктует, какие команды должны быть выполнены, она похожа на использование типографских символов.
Уровни значения в ДНКЦепочка ДНК имеет несколько уровней значения; это зависит от того, насколько велик кусок цепочки, который вы рассматриваете, и насколько мощен ваш «аппарат для расшифровки». На низшем уровне каждая цепочка ДНК содержит код эквивалентной цепочки РНК, и необходимой расшифровкой является транскрипция. Разделив ДНК на триплеты и пользуясь «генетической расшифровкой», можно прочитать ДНК как последовательность аминокислот. Это — трансляция (уровнем выше, чем транскрипция). На следующем уровне иерархии ДНК читается как набор белков. Физическое извлечение белков из генов называется «экспрессией генов». В настоящий момент это является наиболее высоким из доступных нам уровней значения ДНК.
Однако в ДНК безусловно имеются и более высокие уровни значения, которые различить труднее. Например, у нас есть все основания полагать, что в ДНК человеческого существа закодированы такие его характеристики, как форма носа, музыкальные способности, быстрота рефлексов и так далее. Возможно ли, в принципе, научиться считывать такую информацию прямо с цепочек ДНК, минуя физический процесс эпигенезиса — извлечения фенотипа из генотипа? Теоретически такое возможно, так как можно вообразить мощнейшую компьютерную программу, симулирующую весь процесс, вплоть до отдельных клеток, отдельных белков, каждой мельчайшей детали, участвующей в воспроизводстве ДНК, клеток… и так далее, до конца лестницы. Результатом работы такой программы псевдо-эпигенезиса было бы описание фенотипа на высшем уровне.
Существует еще одна (очень маловероятная) возможность может быть, нам удастся научиться читать фенотип с генотипа, минуя изоморфную симуляцию физического процесса эпигенезиса и пользуясь вместо этого более простым расшифровывающим механизмом. Это можно назвать «сокращенным псевдо-эпигенезисом». К сожалению, сокращенный или нет, псевдо-эпигенезис пока нам недоступен — за одним замечательным исключением. Тщательный анализ вида Felis Catus показал, что на самом деле возможно прочитать фенотип прямо с генотипа. Читатель, может быть, лучше поймет этот замечательный факт, рассмотрев следующий типичный кусок ДНК Felis Catus: