Kniga-Online.club
» » » » Александр Китайгородский - Невероятно – не факт

Александр Китайгородский - Невероятно – не факт

Читать бесплатно Александр Китайгородский - Невероятно – не факт. Жанр: Математика издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Девушка пришла без двадцати шесть. Встреча состоится, если кавалер явится до шести. Этому соответствует первый отрезок.

Девушка пришла в 18.00. Встреча состоится, если кавалер явится от 17.40 до 18.20. Такой встречи соответствует второй отрезок, построенный на рисунке.

Если девушка пришла в 18.20, то встреча состоится при условии, если математик явится к продуктовому магазину между 18.00 часами и крайним сроком – 18.40. Вот вам третий отрезок.

Теперь еще одна точка, и заштрихованная область будет готова: девушка успела прибежать на свидание в 18.40. Она застанет своего возлюбленного, если он явился не раньше 18.20.

Что же дальше? Где же искомая вероятность? Нетрудно догадаться, что она будет равняться частному от деления площади заштрихованной области на площадь всего квадрата.

По сути дела, определение вероятности остается тем же – благоприятные варианты относятся ко всем возможным. Но если ранее мерой было число случаев, то теперь мерой является площадь на графике.

Два незаштрихованных треугольника образуют квадрат со стороной, соответствующей 40 минутам. Его площадь 402. Таким образом, искомую вероятность получим, поделив (3600-1600) на 3600. Итого 5/9.

Будем надеяться, что математик встретится со своей девушкой.

Применение теории вероятностей к событиям с непрерывным рядом исходов намного расширяет ее возможности.

Одной из исторически первых задач такого рода была проблема, поставленная и решенная французским естествоиспытателем XVIII века Бюффоном.

На большом листе бумаги начерчен ряд параллельных линий. Наобум бросается игла, длина которой много меньше расстояния между линиями на бумаге. Игла может пересечь одну из линий, а может очутиться и между линиями. Надо оценить вероятность того, что пересечение произойдет.

Предполагается, что центр иглы с равной вероятностью может попасть в любое место бумажного листа. Так же точно считается, что угол наклона иглы к начерченным линиям может принять какое угодно значение. Если игла попадет на середину между линиями, то она не пересечет линии, как бы она ни оказалась повернутой. Если же центр иглы очутился вблизи линии, то пересечение не произойдет, если игла установится параллельно линии или около того, и напротив, игла пересечет линию, если образует угол, близкий к прямому. Получается так: чем ближе к линии попадет центр иглы, тем больше вероятность ее пересечения.

Задача может быть решена без всякой математики. Попробуйте свои силы.

Треугольник Паскаля

Однажды я медленно шёл по Парижу, разглядывал витрины магазинов и читал вывески. Цветастая надпись над входом грязновато-серого здания настойчиво приглашала зайти и попытать счастья. Я удивился, что игорный дом работает среди бела дня, – это не соответствовало сведениям, почерпнутым мною из классической литературы – и… я зашел. Взору представилась поразительная картина: десятки людей стояли лицом к стене, и перед каждым находился цветной ящик. Подойдя ближе, я увидел, что они либо нажимали кнопку, либо дергали за ручку, будто заводя заглохший лодочный мотор.

Через несколько минут я понял, в чем дело: люди играли с автоматами. Зрелище это неприятное, но великолепное поле для наблюдений психолога. Человек играет с судьбой. Один на один. Все побочные обстоятельства отсеяны. Нет ни соперничеств, ни личной неприязни, ни необходимости скрывать свои чувства.

Есть автоматы, у которых вы можете выиграть только конфетку или сигареты, есть такие, которые играют на деньги, и, наконец, существует возможность наслаждаться игрой безгранично, вступив в единоборство с автоматом, выигрыш у которого дает лишь право дальнейшей игры. Бессмысленно, не правда ли? Но вот так оно есть. Эти автоматы вы можете найти в любом баре, в любом кафе любого города Америки и Западной Европы.

В чем же состоит игра? В принципе она сводится к следующему. Выпускается на волю шарик, который под действием силы тяжести или щелчка пружины движется по доске, на которой установлены препятствия. От каждой преграды шарик может отскочить куда попало. Получив несколько десятков таких случайных щелчков, шарик добирается до дна ящика и успокаивается в каком-то положении.

В зависимости от формы преград и от того, как они установлены, разные места дна ящика будут достижимы в различной степени. Определив из многочисленных опытов значения вероятностей окончания путешествия шарика в том или ином конечном пункте, нетрудно построить правила игры, которые позволят автомату уверенно обыгрывать своего живого партнера.

В самой простой своей форме игровой автомат похож на так называемую доску Гальтона, которую используют в лекционных демонстрациях.

Прошу взглянуть на рисунок. В воронку насыпаются шарики. По очереди они мчатся вниз, отскакивают то вправо то влево от препятствий и наконец достигают какой-то ячейки. В качестве препятствий можно брать шестиугольные бляшки или вбить в доску гвоздики. Для доски Гальтона разработана детальная теория. Мы попытаемся обойтись без нее и предположить, что от каждого гвоздика шарик с равной вероятностью может отскочить влево или вправо. Отклонение вправо и влево будет происходить совершенно по тем же законам, что и появление в рулетке красного и черного. На одну комбинацию лллллл… или пппппп… приходится множество комбинаций, состоящих из примерно равного числа отклонений влево и вправо. Поэтому чаще всего шарик будет попадать в среднюю пробирку и реже всего в самые крайние.

Можно провести большое число опытов, и каждый раз шарики будут распределяться примерно одинаково. Если усреднить результаты, то получим гладкую симметричную колоколообразную кривую, которая называется кривой Гаусса или кривой нормального распределения. Не кажется ли вам, читатель, странным, что какой-то кривой мы уделяем так много внимания. На небольшом клочке бумаги можно начертить сколько угодно самых разнообразных кривых, и никому не придет в голову присваивать им имена или названия. А наша этой чести удостаивается. Почему? Не имеет ли она какой-то математический признак, раз она заслужила специальное название.

Несомненно. Сейчас мы поясним, в чем состоит ее математическая общность, только разрешите от реального опыта перейти к абстрактной схеме. И пожалуйста, имейте в виду, что так поступают всегда физики-теоретики, поэтому абстрагированием мы не нарушаем канонов науки.

Упрощение, которое мы введем, состоит в следующем: будем считать, что каждый столбик отличается от соседнего на единицу отклонений. Положим для конкретности, что доска состоит из 10 рядов препятствий. Будем считать, что шарик обязательно встречается с одним из препятствий каждого ряда и с равной вероятностью отскакивает вправо или влево, при этом отклонения происходят всегда на один интервал.

Тогда шарик, который попал в среднюю пробирку, отклонился 5 раз влево, 5 раз вправо. Следующая ячейка заполнена шариками, путь которых состоял из шести отклонений в одну сторону и четырех в другую. Далее идут пробирки, заполняющиеся шариками в соответствии с вариантами 7–3, 8–2, 9–1 и 10–0.

Вариант 5–5 осуществляется максимальным числом способов, 6–4 – уже несколько меньшим, 7–3 – еще меньшим… 10–0 – самая редкая комбинация. Отсюда и характерный вид кривой, проходящей через вершины столбиков.

Высоты столбиков пропорциональны числу комбинаций, с помощью которых осуществляется тот или иной вариант. Об этом мы уже говорили (обратитесь, пожалуйста, к стр. 17) [ссылка], рассматривая все возможные варианты серии из 5 игр в рулетку.

Надо было бы для ясности выписать все комбинации для серии из 10 опытов. Пожалуй, мы пойдем на большее. На этой странице изображен так называемый треугольник Паскаля, с помощью которого можно определять числа комбинаций для любых рядов испытаний. Для того чтобы продолжить этот треугольник хоть до бесконечности, нужно лишь время и умение складывать. Даже таблицу умножения знать не обязательно, поскольку каждое число треугольника равно сумме двух чисел, а именно соседних левого и правого верхней строки.

В результате этих наипростейших арифметических операций мы получаем числа комбинаций левого и правого, красного и черного и вообще любых статистических «да» и «нет».

Как же пользоваться треугольником? Любая из его строк дает числа комбинаций для определенного числа элементов. На рисунке выделена пятая строка. Она отвечает на все вопросы, касающиеся рядов из пяти испытаний. Числам 1, 5, 10, 10, 5, 1 (мы помним их) пропорциональны вероятности появления красного цвета в пяти последовательных поворотах колеса рулетки 0 раз, 1 раз, 2 раза, 3 раза, 4 раза и 5 раз. Значение вероятностей мы получим, поделив каждое число треугольника Паскаля на общее число испытаний, которое равно сумме чисел строки.

Возвращаясь к доске Гальтона мы можем сказать, что при десяти случайных встречах с препятствиями число шариков, которые попадут в крайние пробирки (все встречи привели к одним лишь левым или к одним лишь правым отклонениям), будет в среднем в 252 раза меньше числа шариков, попавших в средний приемник.

Перейти на страницу:

Александр Китайгородский читать все книги автора по порядку

Александр Китайгородский - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Невероятно – не факт отзывы

Отзывы читателей о книге Невероятно – не факт, автор: Александр Китайгородский. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*