Kniga-Online.club
» » » » Айзек Азимов - Краткая история химии. Развитие идей и представлений в химии

Айзек Азимов - Краткая история химии. Развитие идей и представлений в химии

Читать бесплатно Айзек Азимов - Краткая история химии. Развитие идей и представлений в химии. Жанр: Химия издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Уместно спросить, почему радиоактивные элементы, постоянно распадаясь, все же продолжают существовать? В 1904 г. этот вопрос разрешил Резерфорд. Изучая скорость радиоактивного распада, он показал, что после определенного периода, различного для разных элементов, распадается половина данного количества того или иного радиоактивного элемента. Этот период, характерный для каждого отдельного типа радиоактивного вещества, Резерфорд назвал периодом полураспада (рис. 22).

Рис. 22. Период полураспада радона определяют, измеряя через равные промежутки времени количество оставшегося вещества. Полученная зависимость представляет собой «затухающую» экспоненциальную кривую у=е-ах.

Период полураспада радия составляет, например, немногим менее 1600 лет. На протяжении геологических эпох любое количество радия в земной коре, конечно же, давно бы исчезло, если бы оно постоянно не пополнялось в результате распада урана. То же самое можно сказать и о других продуктах распада урана, в том числе и о таких, период полураспада которых измеряется долями секунды.

Период полураспада самого урана составляет 4 500 000 000 лет. Это громадный период времени, и за всю историю Земли распасться могла лишь часть первоначальных запасов урана. Торий распадается еще медленнее: его период полураспада составляет 14 000 000 000 лет.

Такие огромные промежутки времени можно определить только путем подсчета числа альфа-частиц, испускаемых данной массой урана (или тория). Резерфорд подсчитывал альфа-частицы, регистрируя небольшие вспышки, возникающие при соударении альфа-частиц с экраном из сульфида цинка (т. е. при помощи так называемого сцинтилляционного счетчика).

Появление каждой новой альфа-частицы означало, что распался еще один атом урана, так что Резерфорд мог определить, сколько атомов распадается в секунду. Исходя из используемой им массы урана, Резерфорд определил общее число атомов урана. Располагая такими данными, было уже нетрудно рассчитать время, необходимое для распада половины имеющегося количества урана. Как выяснилось, речь идет о миллиардах лет.

Распад урана — настолько постоянный и характерный процесс, что его можно использовать для определения возраста Земли. В 1907 г. американский химик Бертрам Борден Болтвуд (1870—1927) предположил, что при такого рода определениях можно руководствоваться содержанием свинца в урановых минералах. Если предположить, что весь свинец в минералах появился в результате распада урана, то легко вычислить, сколько на это потребовалось времени. С помощью этого метода удалось определить, что возраст твердой земной коры исчисляется по крайней мере четырьмя миллиардами лет.

Тем временем Содди продолжал описывать изменения атома, вызываемые отдачей им субатомных частиц. Если атом теряет альфа-частицу (заряд +2), общий заряд его ядра уменьшается на два и элемент перемещается в периодической таблице на две клетки влево.

Если атом теряет бета-частицу (электрон с зарядом -1), то ядро приобретает дополнительный положительный заряд [126] и элемент перемещается в периодической таблице на одну клетку вправо. Если атом испускает гамма-лучи (незаряженные), то запас энергии при этом меняется, но состав частиц не затрагивается, так что он остается тем же самым элементом.

Руководствуясь этими правилами, химики смогли обстоятельно изучить многие радиоактивные ряды.

Изотопы

С открытием радиоактивных элементов перед учеными встала серьезная проблема: что делать с различными продуктами распада урана и тория? Их открывали десятками, а в периодической таблице оставалось максимум только девять мест (от полония с порядковым номером 84 до урана с порядковым номером 92), на которые их можно было бы поместить.

Так, атом урана (порядковый номер 92) испускает альфа-частицу. Порядковый номер нового элемента, согласно правилу Содди, 90. Это означает, что атом урана должен образовать атом тория. Однако период полураспада обычного тория измеряется 14 миллиардами лет, тогда как период полураспада тория, полученного из урана, составляет всего 24 дня.

Различия наблюдаются даже при получении нерадиоактивных элементов. Например, Ричардсу (специалисту по атомным массам, см. гл. 5) в 1913 г. удалось показать, что атомная масса свинца, полученного в результате распада урана, несколько отличается от атомной массы обычного свинца.

У Содди хватило решимости предположить, что одному и тому же месту в периодической таблице может соответствовать более одного вида атомов. Место номер 90 могут занимать различные разновидности тория, место номер 82 — различные разновидности свинца и т. д. Содди назвал эти разновидности атомов, занимающие одно и то же место в таблице, изотопами (от греческого tópos — место).

Изотопы, занимающие одно и то же место таблицы, должны иметь один и тот же порядковый номер и, следовательно, одно и то же число протонов в ядре и одно и то же число электронов на оболочках. Изотопы элемента должны обладать одинаковыми химическими свойствами, так как эти свойства зависят от числа и расположения в атомах электронов.

Но как в таком случае объяснить различие в радиоактивных свойствах и в атомных массах?

В прошлом веке Праут выдвинул свою знаменитую гипотезу (см. гл. 5), согласно которой все атомы составлены из водорода, так что все элементы должны иметь целочисленные атомные массы. Однако, как выяснилось, большинство атомных масс являются нецелочисленными, и этот факт, казалось, опровергал гипотезу.

Но, согласно новым представлениям о строении атома, атом имеет ядро, состоящее из протонов (и нейтронов). Протоны и нейтроны примерно равны по массе, и, следовательно, массы всех атомов должны быть кратными массе атома водорода (состоящего из одного протона). Гипотеза Праута возродилась, зато вновь возникли сомнения относительно того, какими должны быть атомные массы.

В 1912 г. Дж. Дж. Томсон (который, как мы уже говорили выше, открыл электрон) подверг лучи положительно заряженных ионов неона воздействию магнитного поля. Магнитное поле заставляло ионы отклоняться, и в результате этого они попадали на фотопластинку. Если бы все ионы были одинаковыми по массе, то они все отклонились бы магнитным полем на один и тот же угол, и на фотопленке появилось бы обесцвеченное пятно. Однако в результате этого эксперимента Томсон получил два пятна, одно из которых было примерно в десять раз темнее другого. Сотрудник Томсона Фрэнсис Уильям Астон (1877—1945), усовершенствовавший позднее этот прибор, подтвердил правильность полученных данных. Аналогичные результаты были получены и для других элементов. Этот прибор, позволявший разделять химически подобные ионы на пучки ионов с разной массой, получил название масс-спектрографа.

Величина отклонения одинаково заряженных ионов в магнитном поле зависит от массы этих ионов; ионы с большей массой отклоняются меньше, и наоборот. Таким образом, опыты Томсона и Астона показали, что существуют два вида атомов неона. У одного типа атомов массовое число равно 20, у другого — 22. В результате определения относительной черноты пятен было установлено, что содержание неона-20 в 10 раз больше, чем неона-22. Позднее было обнаружено также наличие небольшого количества неона-21. Если, рассчитывая атомную массу неона, исходить из этих данных, то окажется, что она равна примерно 20.2.

Другими словами, масса отдельных атомов представляет собой целое число, кратное массе атома водорода [127], но атомная масса отдельного элемента — это среднее атомных масс составляющих его атомов, и поэтому она может и не быть целым числом.

Средняя атомная масса элемента с большим числом изотопов в некоторых случаях может оказаться больше, чем средняя атомная масса элемента с более высоким порядковым номером. Например, у теллура, порядковый номер которого 52, насчитывается семь изотопов. Из них два самых тяжелых изотопа — теллур-126 и теллур-128 — являются наиболее распространенными. Следовательно, атомная масса теллура приближается к 127.6. Порядковый номер йода 53, т. е. на единицу больше, чем у теллура. Но у йода только один изотоп — йод-127, и, следовательно, его атомная масса 127. Когда Менделеев в своей периодической таблице поместил йод за теллуром и тем нарушил порядок, диктуемый атомной массой, он, не зная этого, следовал зарядам ядер, т. е. физической сущности периодического закона.

Приведем еще один подобный пример. У калия (порядковый номер 19) три изотопа — калий-39, калий-40 и калий-41, но наиболее распространен самый легкий изотоп — калий-39. В результате атомная масса калия 39.1. Порядковый номер аргона 18, и у него также три изотопа — аргон-36, аргон-38 и аргон-40, однако наиболее распространен самый тяжелый изотоп — аргон-40. В результате атомная масса аргона равна примерно 40.

Перейти на страницу:

Айзек Азимов читать все книги автора по порядку

Айзек Азимов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Краткая история химии. Развитие идей и представлений в химии отзывы

Отзывы читателей о книге Краткая история химии. Развитие идей и представлений в химии, автор: Айзек Азимов. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*