Иосиф Шкловский - Звезды: их рождение, жизнь и смерть
Гораздо более эффективным источником энергии является падение на поверхность нейтронной звезды облаков и струй газа. Так как радиусы таких звезд очень малы ( 10 км), а массы близки к солнечной, то скорость падающего на поверхность таких звезд вещества достигает 100 000 км/с, т. е. 1/3 скорости света (вспомним, что на поверхности Земли эта скорость равна 11 км/с, а на поверхности Солнца 618 км/с). При такой скорости падение одного грамма вещества приводит к выделению 0,1c2 1020 эрг энергии. Следовательно, для производства 1037 эрг/с надо, чтобы на поверхность нейтронной звезды ежесекундно падало 1017 г газа. Эту величину следует считать достаточно «скромной». Ведь при таком темпе за год выпадает не больше одной тысячной массы Земли. Источником этого газа может быть только оптическая звезда, находящаяся вблизи нейтронной звезды. Как мы видели выше, оптические компоненты двойных систем, другой компонентой которых являются нейтронные звезды, заполняют свою полость Роша. Поэтому с части поверхности оптической звезды по направлению к нейтронной звезде будет непрерывно течь струя газа.
Как показывают расчеты, эта струя будет «питать» газовый диск, быстро вращающийся вокруг нейтронной звезды[ 57 ]. Из этого диска газ будет падать на нейтронную звезду, ускоряясь ее гравитационным полем. При падении на поверхность нейтронной звезды приобретенная газом энергия превратится в излучение. Наличие у нейтронной звезды сильного магнитного поля усложняет эту картину движения газовых струй в тесной двойной системе. Падающая на нейтронную звезду струя газа будет на некотором расстоянии от нее (там, где плотность магнитной энергии равна плотности кинетической энергии газовой струи) остановлена, после чего газ потечет вдоль силовых линий магнитного поля на поверхности нейтронной звезды. Таким образом, следует ожидать, что падающие от оптической звезды массы ионизованного газа будут достигать поверхности нейтронной звезды в двух сравнительно малых «пятнах», окружающих магнитные полюсы. Размеры этих «пятен» могут быть около 0,1 радиуса нейтронной звезды, т. е. 1 км. В этой малой области происходят грандиозные по масштабам энерговыделения процессы. Там распространяются сильные ударные волны, происходит весьма эффективное ускорение электронов до релятивистских энергий, имеют место сложные процессы взаимодействия охваченной разными возмущениями плазмы с магнитным полем. Детали этих процессов сейчас тщательно исследуются теоретиками и многое здесь еще непонятно. Но общая картина генерации мощного рентгеновского излучения уже проясняется. Излучают релятивистские и нерелятивистские электроны, движущиеся в сильном магнитном поле нейтронной звезды. Источник энергии — потенциальная энергия, приобретенная газом в сильнейшем гравитационном поле нейтронной звезды. Наконец, источник газа — оптическая компонента тесной двойной системы, заполняющая свою полость Роша или же звездный ветер.
Мы пока еще не знаем с достоверностью, каковы те эволюционные процессы, которые приводят к образованию в тесной двойной системе нейтронной звезды. Общая проблема эволюции в таких системах уже рассматривалась в § 14. Несомненно, что нейтронная звезда в тесной двойной системе есть «конечный продукт» эволюции более массивной компоненты этой системы. Образованию нейтронной звезды должно было предшествовать существенное перетекание массы от эволюционирующей (первоначально более массивной) компоненты ко второй компоненте. Можно предполагать, что после того как существенная часть (70—80%) массы эволюционирующей звезды перетекла, произошел взрыв гелиевой звезды — вспышка сверхновой, приведшая к образованию нейтронной звезды. В процессе взрыва могла быть выброшена из двойной системы масса газа до 1M со скоростью порядка нескольких тысяч километров в секунду. По закону сохранения импульса, если взрыв не вполне симметричен, центр тяжести двойной системы должен был получить равный и противоположно направленный импульс. Не этим ли объясняется то, что источник Геркулес Х-1 находится так «высоко» над галактической плоскостью? Интересно, что лучевая скорость HZ Геркулеса направлена к галактической плоскости и близка к 60 км/с. Это может означать, что она, удалившись на максимальное расстояние от галактической плоскости, движется теперь обратно. В принципе такая система может совершить несколько колебаний поперек галактической плоскости с характерным периодом порядка 108 лет.
Рис. 23.11: Схема эволюции тесной двойной системы.На рис. 23.11 приведена схема эволюции тесной двойной системы массивных звезд, рассчитанная голландскими теоретиками.
Наряду с «оптической» звездой, заполняющей свою полость Роша, как уже упоминалось выше, источником газа для аккреции на нейтронную звезду может быть и «звездный ветер» от оптической компоненты, достаточно удаленной от нейтронной звезды и поэтому не заполняющей своей полости Роша. В этом случае оптическая компонента—горячий сверхгигант спектрального класса О—В с массой больше 10M. Именно у таких звезд мощность корпускулярного излучения (или что то же — звездного ветра) достаточно велика, например, 10-6—10-7M/год. В этом случае только доля процента вытекающего из звезды корпускулярного излучения «перехватывается» нейтронной звездой, что, впрочем, вполне достаточно для генерации рентгеновского излучения наблюдаемой мощности. Мы приходим, таким образом, к представлению, что должны быть две разновидности рентгеновских источников — компонент двойных массивных систем:
a. источники, где оптическая компонента — горячий массивный сверхгигант, испускающий мощный звездный ветер; типичный представитель — Центавр Х-3;
b. источники, где оптическая компонента по массе лишь немного превышает Солнце и заполняет свою полость Роша. Типичный представитель — Геркулес Х-1.
В то время как источники первого типа находятся вблизи галактической плоскости, источники второго типа могут быть достаточно удалены от нее.
Не исключено, что обе разновидности источникой происходят от тесных двойных систем с массивными компонентами, но в то время как у источников типа а) массы компонент сходны, у источников типа б) отношение масс больше 3. Расчеты показывают, что если у более массивной компоненты M1 > 10M, то после перетекания масс останется компактная гелиевая звезда с массой 3M, которая может взорваться как сверхновая и «превратиться», таким образом, в нейтронную звезду. В противном случае в процессе эволюции могут образоваться только белые карлики. Если отношение масс M1/M2 > 3, то в процессе эволюции, как оказывается, большая часть массы системы покидает ее. При взрыве сверхновой в такой системе в большинстве случаев пары распадаются.
Характерной особенностью рентгеновских источников является наличие в ряде случаев наряду с орбитальными периодами весьма коротких периодов пульсации. Выше мы уже подробно говорили о 4,84-секундном периоде пульсаций у Центавра Х-3 и 1,24-секундном — у Геркулеса Х-1. В 1975 г. было сделано важное открытие «длинных» периодов пульсаций у рентгеновских источников. Например, у источника 0940—40, принадлежащего к типу а) и имеющего орбитальный период около 9 суток, найден пульсационный период в 283 с. Несколько длинных пульсационных периодов было найдено у так называемых «новых» (или «временных») рентгеновских источников[ 58 ]. Довольно длинный пульсационный период (405 с) был обнаружен у источника А 1118—61. Самый длинный период у известных к 1977 г. источников равен 31 минуте. Скорее всего продолжительные периоды пульсаций есть следствие торможения вращения нейтронной звезды намагниченной плазмой, в которую «погружена» двойная система. Возможно, что конкретным механизмом такого торможения является генерация вращающейся нейтронной звездой звуковых волн, а также обычная вязкость. Таким образом, период вращения нейтронной звезды — рентгеновского пульсара — как бы «подстраивается» к физическим характеристикам двойной системы, в которой он находится (период орбитального движения, мощность звездного ветра от «оптической» компоненты и пр.). Наблюдаемые вариации периодов вращения пульсаров скорее всего вызваны, в первую очередь, вариациями мощности звездного ветра, «питающего» путем аккреции нейтронную звезду.
Долгие годы, несмотря на ряд попыток, никак не удавалось доказать двойственность самого яркого рентгеновского источника Скорпион Х-1. Это оказалось очень трудной задачей, так как на ожидаемое регулярное изменение блеска оптической звезды, отождествляемой с этим источником, накладывались беспорядочные изменения с большой амплитудой. В то же время никакой периодичности в рентгеновском излучении (типа той, которая наблюдается у Центавра Х-3 и Геркулеса Х-1) у Скорпиона Х-1 не было обнаружено. Последнее обстоятельство, конечно, не является аргументом против двойственности этого источника: ведь вполне возможно, что плоскость орбиты наклонена под большим углом к лучу зрения!