Иосиф Шкловский - Звезды: их рождение, жизнь и смерть
Вскоре после того, как эти удивительные особенности источника Геркулес Х-1 стали известны, он был отождествлен с переменной звездой HZ Геркулеса, блеск которой колеблется в пределах 13—15 звездной величины. Эти изменения сопровождаются одновременными спектральными изменениями. Когда звезда более ярка, ее цвет более голубой. Последующие наблюдения (в частности, советских астрономов) показали, что изменение блеска HZ Геркулеса носит периодический характер, причем период в точности равен орбитальному периоду источника Геркулес Х-1, т. е. 1,70 дня. Минимум оптического блеска соответствует минимуму рентгеновского потока. Это означает, что на поверхности оптической звезды (спектральный класс которой F) всегда имеется довольно большое горячее пятно, обращенное к рентгеновскому источнику. Происхождение такого пятна объясняется совершенно естественно: мощное рентгеновское излучение нагревает поверхностные слои «оптической» звезды, обращенные к рентгеновскому источнику.
Почти круговая орбита рентгеновской звезды вокруг «оптической» следует из анализа данных наблюдений. Из вариаций 1,24-секундного периода пульсаций рентгеновского источника с периодом 1,70 дня получается его орбитальная скорость, равная 169 км/с. При этом радиус орбиты близок к 4 1011 см или 5,7 солнечного радиуса, в то время как радиус «оптической» звезды HZ Геркулеса в два раза превышает солнечный. Масса звезды HZ Геркулеса в два раза превышает массу Солнца, а масса ее рентгеновского спутника около одной солнечной массы. Зная радиус HZ Геркулеса и температуру ее «темной» стороны, можно найти светимость этой звезды, а следовательно, ее абсолютную величину. Сравнение найденной таким образом абсолютной величины и наблюдаемой величины позволяет определить расстояние до HZ Геркулеса, которое оказывается близким к 2000 пс. Так как галактическая широта Геркулеса Х-1 довольно велика, 35°, то можно сделать интересный вывод, что расстояние рентгеновского источника от галактической плоскости необычайно велико, свыше 1000 пс! Объяснение этого обстоятельства должно быть неразрывно связано с вопросом о происхождении рентгеновского источника Геркулес Х-1.
Из наблюдений следует, что импульсное рентгеновское излучение пульсара Геркулес Х-1 (так же, как и источника Центавр Х-3) подобно радиоизлучению «обычных» пульсаров носит направленный характер. В таком случае, совершенно так же, как и у радиопульсаров, наблюдаемый период пульсаций есть период вращения излучающего тела вокруг своей оси. Но с таким коротким периодом, как 1,24 с, может вращаться только нейтронная звезда. Таким образом, внешняя аналогия между радио- и рентгеновскими пульсарами превращается в тождество их природы: оба типа пульсаров являются нейтронными звездами. Но в то время как радиопульсары никогда не входят в состав двойных систем, рентгеновские пульсары наблюдаются только в двойных системах[ 55 ]. Имеется и еще одно важное различие между двумя видами пульсаров: периоды радиопульсаров монотонно растут, причем скорость увеличения периода каждого такого пульсара зависит только от его возраста, у источника же Геркулес Х-1 период пульсаций за полгода наблюдений уменьшился примерно на одну стотысячную своего значения. Это уменьшение периода происходило отнюдь не равномерно. Аналогичная картина имеет место и для источника Центавр Х-3.
Особую проблему представляет объяснение отсутствия 35-дневного цикла в оптической переменности HZ Геркулеса. Ведь если оптическая переменность этой звезды объясняется ее нагревом мощным потоком рентгеновского излучения от второй компоненты, то почему этот нагрев продолжается и в течение 24-х дней 35-дневного периода, когда источник рентгеновского излучения «выключен»? Здесь могут быть два объяснения, отнюдь не исключающие одно другое. Во-первых, можно предположить, что диаграмма излучения рентгеновского пульсара участвует в двух движениях. Если излучающая область не совпадает с полюсами вращающейся нейтронной звезды (а, например, находится около магнитных полюсов, как у радиопульсаров), то из-за вращения этой звезды около оси диаграмма излучения будет периодически проходить через наблюдателя. Здесь геометрия такая же, как у радиопульсаров. Представим себе теперь, что сама ось вращения описывает прецессионное движение (так называемая «свободная прецессия», вызванная небольшой асимметрией в распределении массы в нейтронной звезде) с периодом около 35 дней. Тогда можно представить себе, что в течение почти 2/3 этого периода диаграмма излучения рентгеновского пульсара не будет «смотреть» на Землю ни при какой фазе осевого вращения. В то же время она всегда будет направлена на какую-то часть поверхности находящейся рядом оптической звезды, которая находится достаточно близко и видна под большим телесным углом.
Недостатком этой модели являются довольно жесткие ограничения геометрического характера. Подозрительным также представляется и то, что ни у одного из известных радиопульсаров явление периодического «выключения» импульсов на длительный срок не наблюдается. Между тем явление свободной прецессии не должно, казалось бы, зависеть от того, является ли нейтронная звезда одиночной или входит в состав двойной системы. Альтернативой является предположение, что около компактного рентгеновского источника находится более или менее изотропный источник пока ненаблюдаемого мягкого рентгеновского или ультрафиолетового излучения, которое и «греет» находящуюся рядом оптическую звезду HZ Геркулеса. Этим источником может быть, например, горячий газовый диск, окружающий рентгеновский пульсар — быстро вращающуюся нейтронную звезду. Для подтверждения этой гипотезы решающее значение должны иметь будущие внеатмосферные наблюдения источника Геркулес Х-1 в указанной выше спектральной области[ 56 ].
Итак, вся совокупность наблюдательных данных говорит о том, что рентгеновские источники, входящие в состав двойных систем, представляют собой весьма компактные объекты с массой, близкой к массе Солнца. Почти наверное это нейтронные звезды, очень быстро вращающиеся вокруг своих осей. Нужно теперь разобраться в главном вопросе: в чем причина столь мощного рентгеновского излучения нейтронных звезд, входящих в состав двойных систем? Конечно, о ядерных источниках здесь говорить не приходится. Остаются только два источника: кинетическая энергия вращения такой звезды и потенциальная гравитационная энергия, освобождаемая при падении на поверхность нейтронной звезды газовых масс. Последний механизм называется «аккрецией». Сразу же нужно сказать, что если рентгеновские пульсары — это нейтронные звезды, то первый из упомянутых выше источников энергии отпадает. В самом деле, в случае источника Центавр Х-3 экваториальная скорость нейтронной звезды должна быть около 10 км/с. Следовательно, кинетическая энергия вращения этой звезды должна быть 3 1044 эрг. Так как мощность рентгеновского излучения этого источника 1037 эрг/с, то запаса кинетической энергии хватит только на один год. Вообще следует сказать, что при таком источнике энергии рентгеновские пульсары тормозились бы, т. е. периоды их вращения должны были бы расти, что противоречит наблюдениям.
Гораздо более эффективным источником энергии является падение на поверхность нейтронной звезды облаков и струй газа. Так как радиусы таких звезд очень малы ( 10 км), а массы близки к солнечной, то скорость падающего на поверхность таких звезд вещества достигает 100 000 км/с, т. е. 1/3 скорости света (вспомним, что на поверхности Земли эта скорость равна 11 км/с, а на поверхности Солнца 618 км/с). При такой скорости падение одного грамма вещества приводит к выделению 0,1c2 1020 эрг энергии. Следовательно, для производства 1037 эрг/с надо, чтобы на поверхность нейтронной звезды ежесекундно падало 1017 г газа. Эту величину следует считать достаточно «скромной». Ведь при таком темпе за год выпадает не больше одной тысячной массы Земли. Источником этого газа может быть только оптическая звезда, находящаяся вблизи нейтронной звезды. Как мы видели выше, оптические компоненты двойных систем, другой компонентой которых являются нейтронные звезды, заполняют свою полость Роша. Поэтому с части поверхности оптической звезды по направлению к нейтронной звезде будет непрерывно течь струя газа.
Как показывают расчеты, эта струя будет «питать» газовый диск, быстро вращающийся вокруг нейтронной звезды[ 57 ]. Из этого диска газ будет падать на нейтронную звезду, ускоряясь ее гравитационным полем. При падении на поверхность нейтронной звезды приобретенная газом энергия превратится в излучение. Наличие у нейтронной звезды сильного магнитного поля усложняет эту картину движения газовых струй в тесной двойной системе. Падающая на нейтронную звезду струя газа будет на некотором расстоянии от нее (там, где плотность магнитной энергии равна плотности кинетической энергии газовой струи) остановлена, после чего газ потечет вдоль силовых линий магнитного поля на поверхности нейтронной звезды. Таким образом, следует ожидать, что падающие от оптической звезды массы ионизованного газа будут достигать поверхности нейтронной звезды в двух сравнительно малых «пятнах», окружающих магнитные полюсы. Размеры этих «пятен» могут быть около 0,1 радиуса нейтронной звезды, т. е. 1 км. В этой малой области происходят грандиозные по масштабам энерговыделения процессы. Там распространяются сильные ударные волны, происходит весьма эффективное ускорение электронов до релятивистских энергий, имеют место сложные процессы взаимодействия охваченной разными возмущениями плазмы с магнитным полем. Детали этих процессов сейчас тщательно исследуются теоретиками и многое здесь еще непонятно. Но общая картина генерации мощного рентгеновского излучения уже проясняется. Излучают релятивистские и нерелятивистские электроны, движущиеся в сильном магнитном поле нейтронной звезды. Источник энергии — потенциальная энергия, приобретенная газом в сильнейшем гравитационном поле нейтронной звезды. Наконец, источник газа — оптическая компонента тесной двойной системы, заполняющая свою полость Роша или же звездный ветер.