Ричард Фейнман - 6a. Электродинамика
Из гл. 50 (вып. 4) мы уже знаем, что временная функция на фиг. 22.24 может быть представлена в виде наложения постоянного напряжения на синусную волну плюс синусную волну большей частоты плюс еще более высокочастотную синусоиду и т. д., т. е. как ряд Фурье.
Фиг. 22.24. Напряжение на выходе всеволнового выпрямителя.
Если наш фильтр — линейный (т. е. если, как мы предполагали, L и С при изменении токов или напряжений не меняются), то то, что выходит из фильтра, представляет собой тоже наложение выходов от каждой компоненты на входе. Если устроить так, чтобы граничная частота w0 нашего фильтра была значительно ниже наинизшей из частот функции V(t), то постоянный ток (у которого w=0) прекрасно пройдет через фильтр, а амплитуда первой гармоники будет крепко срезана; ну, а амплитуды высших гармоник — тем более. Значит, на выходе можно получить какую угодно гладкость, смотря по тому, на сколько звеньев фильтра у вас хватит денег.
Высокочастотный фильтр нужен тогда, когда необходимо срезать некоторые низкие частоты. Например, в граммофонном усилителе высокочастотный фильтр можно использовать, чтобы музыка не искажалась: он задержит низкочастотное громыхание моторчика и диска.
Можно еще делать и «полосовые» фильтры, отбрасывающие частоты ниже некоторой частоты w1и частоты выше некоторой другой частоты w2 (большей w1), но зато пропускающие все частоты от w1 до w2. Это можно сделать просто, совместив высокочастотный и низкочастотный фильтры, но обычно делают лестничную схему, в которой импедансы z1 и z2 имеют более сложный вид — они сами суть комбинации L и С. У такого полосового фильтра постоянная распространения может выглядеть так, как на фиг. 22.25,а. Его можно использовать, скажем, чтобы отделять сигналы, которые занимают только некоторый интервал частот, например каждый из каналов телефонной связи в высокочастотном телефонном кабеле или модулированную несущую частоту при радиопередаче.
В гл. 25 (вып. 2) мы видели, что такое фильтрование можно производить еще, используя избирательность обычной резонансной кривой (для сравнения она приведена на фиг. 22.25,6). Но резонансный фильтр для некоторых целей подходит хуже, чем полосовой. Вы помните (это было в гл. 48, вып. 4), когда несущая частота wс модулирована «сигнальной» частотой ws, то общий сигнал содержит не только несущую, но и две боковые частоты wc+ws и wc-ws. В резонансном фильтре эти боковые полосы всегда как-то ослабляются, и чем выше сигнальная частота, тем, как видно из рисунка, больше это ослабление. Поэтому «отклик на частоту» здесь неважный. Высшие музыкальные тоны и вовсе не проходят. Но если взять полосовой фильтр, устроенный так, что ширина w2-w1по крайней мере вдвое больше наивысшей сигнальной частоты, то отклик на частоту будет для интересующих нас сигналов плоским.
Еще одно замечание о лестничном фильтре: лестница L—С на фиг. 22.20 — это также приближенное представление передающей линии (фидера). Если имеется длинный проводник, расположенный параллельно другому проводнику (скажем, провод, помещенный в коаксиальном кабеле или подвешенный над землей), то между ними существует какая-то емкость и некоторая индуктивность (из-за магнитного поля между ними). Если представить эту линию составленной из небольших участков Dl, то каждый участок похож на одно звено лестницы L — С с последовательной индуктивностью DL и шунтирующей емкостью DС. Поэтому мы вправе применять здесь наши результаты для лестничного фильтра. Перейдя к пределу при Dl®0, мы получим хорошее описание передающей линии. Заметьте, что, когда Dl становится все меньше и меньше, уменьшаются и DL и DС, но они уменьшаются в одной и той же пропорции, так что отношение DL/DC не падает. Поэтому, перейдя в уравнении (22.28) к пределу при DL, и DС, стремящихся к нулю, мы увидим, что характеристический импеданс z0 — это чистое сопротивление, величина которого равна ЦDL/DС. Отношение DL/DС можно записать также в виде L0/С0, где L0и С0— индуктивность и емкость единицы длины линии; тогда
(22.33)
Заметьте еще, что, когда DL и D С стремятся к нулю, граничная частота w0=Ц4/LC уходит в бесконечность. У идеальной передающей линии нет граничной частоты.
§ 8. Другие элементы цепи
До сих пор мы определили только идеальные импедансы цепи — индуктивность, емкость и сопротивление, а также идеальный генератор напряжения. Теперь мы хотим показать, что другие элементы, такие, как взаимоиндукция, или транзисторы, или радиолампы, можно описать, пользуясь теми же основными элементами.
Фиг. 22.26. Эквивалентная схема взаимной индукции.
Пусть имеются две катушки, и пусть (это сделано нарочно или как-нибудь иначе) поток от одной из катушек пересекает другую (фиг. 22.26,а). Тогда возникает взаимная индукция М двух катушек, так что, когда ток в одной катушке меняется, в другой генерируется напряжение. Можно ли в наших эквивалентных контурах учесть такой эффект? Можно, поступив следующим образом. Мы видели, что наведенная в каждой из двух взаимодействующих катушек э. д. с. может быть представлена в виде суммы двух частей:
(22.34)
Первое слагаемое возникает из самоиндукции катушки, а второе — из ее взаимоиндукции с другой катушкой. Перед вторым слагаемым может стоять плюс или минус, смотря по тому, как поток от одной катушки пронизывает вторую. Делая те же приближения, как и тогда, когда мы описывали идеальную индуктивность, мы можем сказать, что разность потенциалов на зажимах каждой катушки равна э. д. с. катушки. И тогда оба уравнения (22.34) совпадут с теми, которые получились бы из цепи фиг. 22.26, б, если бы э. д. с. в каждом из двух начерченных контуров зависела от тока в противоположном контуре следующим образом:
(22.35)
Фиг. 22.27. Эквивалентная схема взаимной емкости.
Значит, можно представить действие самоиндукции нормальным образом, а действие взаимной индукции заменить вспомогательным идеальным генератором напряжения. Надо, конечно, иметь еще уравнение, связывающее эту з. д. с. с током в какой-то другой части цепи; но, поскольку это уравнение линейно, мы просто добавляем к нашим уравнениям цепи еще одно линейное уравнение, и все наши прежние выводы насчет эквивалентных схем и тому подобного все равно остаются правильными.
Кроме взаимной индукции, можно еще говорить и о взаимной емкости. До сих пор, говоря о конденсаторах, мы всегда представляли, что у них только по два электрода, но во многих случаях (скажем, в радиолампах) могут быть и по нескольку электродов, расположенных вплотную друг к другу. Если на один из них поместить электрический заряд, то его электрическое поле наведет заряды на всех остальных электродах и повлияет на их потенциал. В качестве примера рассмотрим расположение четырех пластин (фиг. 22.27, а). Представим, что эти четыре пластины соединяются с внешней цепью проводами А, В, С и D. Так вот, пока нас интересуют только электростатические эффекты, эквивалентную схему такого расположения электродов можно считать такой, как на фиг. 22.27,6. Электростатическое взаимодействие электродов (всякого со всяким) эквивалентно емкости между этой парой электродов.
И, наконец, посмотрим, как нужно представлять в цепях переменного тока такие сложные устройства, как транзисторы или радиолампы. Надо сначала подчеркнуть, что эти устройства часто действуют так, что связь между токами и напряжениями отнюдь не линейна. В этих случаях часть сделанных нами раньше утверждений, а именно те, которые зависят от линейности уравнений, естественно, перестают быть правильными. Но во многих приложениях рабочие характеристики в достаточной мере линейны — так что и транзисторы и лампы можно считать линейными устройствами.
Фиг. 22.28. Низкочастотная эквивалентная схема вакуумного триода.
Под этим подразумевается, что переменные токи, скажем в анодной цепи радиолампы, прямо пропорциональны разности потенциалов на других электродах, например потенциала сетки и анодного потенциала. Когда же такие линейные соотношения существуют, то к устройствам можно применять представление об эквивалентных схемах.
Как и в случае взаимной индукции, это описание должно включать в себя добавочные генераторы напряжения, которые описывают влияние напряжений или токов в одной части устройства на токи или напряжения в другой его части. К примеру, анодный контур триода, как правило, можно представить сопротивлением, последовательно соединенным с идеальным генератором напряжения, у которого сила источника пропорциональна напряжению на сетке. Получится эквивалентный контур, изображенный на фиг. 22.28. Подобным же образом контур коллектора транзистора удобно представлять в виде сопротивления, последовательно соединенного с идеальным генератором напряжения, сила источника которого пропорциональна силе тока, текущего от эмиттера к базе транзистора. Эквивалентный контур тогда похож на изображенный на фиг. 22.29. До тех пор пока уравнения, описывающие их действие, остаются линейными, мы имеем полное право пользоваться таким представлением для ламп или транзисторов. И тогда, даже если они входят в сложную сеть, все равно наше общее заключение об эквивалентном представлении любого произвольного соединения элементов остается верным.