Kniga-Online.club
» » » » Ричард Фейнман - 9. Квантовая механика II

Ричард Фейнман - 9. Квантовая механика II

Читать бесплатно Ричард Фейнман - 9. Квантовая механика II. Жанр: Физика издательство неизвестно, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

§ 5. Сверхпроводимость

Вы знаете, что очень многие металлы ниже определенной температуры (температура у каждого металла своя) становятся сверхпроводящими. Если вы как следует снизите температуру то металлы начинают проводить электричество без всякого соп­ротивления. Это явление наблюдалось у очень многих металлов, но не у всех, и теория этого явления причинила немало хлопот. Понадобилось довольно долгое время, чтобы разобраться, что происходит внутри сверхпроводников, и я опишу здесь только то, что будет нужно для наших нынешних целей. Оказывается, что из-за взаимодействия электронов с колебаниями атомов в решетке возникает слабое эффективное притяжение между электронами. Грубо говоря, электроны в итоге взаимодействия образуют связанные пары.

Известно также, что каждый отдельный электрон яв­ляется ферми-частицей. Но связанная пара уже будет вести себя как бозе-частица, потому что, если я переставляю местами два электрона в паре, я дважды меняю знак волновой функции, а это означает, что я ничего не меняю. Пара является бозе-частицей.

Энергия спаривания (энергия притяжения электронов) очень-очень слаба. Незначительной температуры достаточно, чтобы тепловое возбуждение разбросало электроны и обратило их в «нормальные» электроны. Но если снизить температуру доста­точно сильно, то эти электроны сделают все от них завися­щее, чтобы прийти в самое наинизшее состояние, и уж тогда-то действительно разберутся попарно.

Мне не хотелось бы, чтобы вы вообразили, будто пары и впрямь скреплены очень тесно, словно точечные частицы. В действительности, именно в этом пункте лежала наибольшая труд­ность в понимании этого явления на первых порах. Два элек­трона, образующие пару, в действительности расходятся на заметные расстояния; и среднее расстояние между парами мень­ше размера отдельной пары. Несколько пар одновременно за­нимают один и тот же объем. Объяснение причины образования электронами в металле пар и оценка энергии, выделяемой при образовании пар, стало триумфом современной науки. Этот фун­даментальный факт в явлении сверхпроводимости впервые разъяснен в теории, созданной Бардином, Купером и Шриффером. Но не это будет темой нашего семинара. Мы попросту примем как данное представление о том, что электроны так или иначе действуют попарно, что можно считать, что эти пары ведут себя более или менее как частицы и что поэтому можно гово­рить о волновой функции «пары».

Уравнение Шредингера для пары более или менее похоже на (19.3). Единственная разница состоит в том, что заряд q бу­дет удвоенным зарядом электрона. Кроме того, мы не знаем инер­ции (или эффективной массы) пары в кристаллической решетке, поэтому неизвестно, какое число поставить вместо т. Не сле­дует также считать, что если перейти к очень высоким частотам (или коротким волнам), то форма уравнения останется правиль­ной, ведь кинетическая энергия, которая отвечает очень резко меняющимся волновым функциям, может стать столь большой, что разрушит пары. При конечных температурах в соответствии с теорией Больцмана всегда встречается сколько-то разрушенных пар. Вероятность того, что пара разрушится, пропорциональна ехр(-Eпары/kT). He связанные попарно электроны называются «нормальными» и движутся по кристаллу обычным образом. Я буду, однако, рассматривать только случай истинно нулевой температуры или, во всяком случае, пренебрегу усложнениями, вызываемыми теми электронами, у которых нет пары.

Раз пары электронов—это бозоны, то когда множество их собирается в одном состоянии, амплитуда перехода других пар в то же состояние становится особенно велика. Значит, почти все пары должны скопиться при наинизшей энергии в точности в одинаковом состоянии, сбежать кому-либо из них в другое состояние очень нелегко. У каждой пары амплитуда того, что она перейдет в занятое состояние в Цn раз больше, чем в не­занятое (где хорошо известный фактор Цn определяется насе­ленностью n наинизшего состояния). Значит, мы вправе ожи­дать, что все пары будут двигаться в одном состоянии.

Как же тогда будет выглядеть наша теория? Я обозначу че­рез y волновую функцию пары в наинизшем энергетическом со­стоянии. Однако из-за того, что yy* окажется пропорциональ­ным плотности заряда r, я с равным правом могу записать y как квадратный корень из плотности заряда, умноженный на некоторый фазовый множитель

где r и q — действительные функции от r. (В таком виде можно, конечно, записать любую комплексную функцию.) Что мы под­разумеваем, говоря о плотности заряда,— это ясно, но каков физический смысл фазы 9 волновой функции? Ну что же, да­вайте поглядим, что получится, если мы подставим y (r) в (19.12) и выразим плотность тока через эти новые переменные r и q. Это простая замена переменных, и, не повторяя всех выкладок, я приведу результат:

Поскольку и плотность тока и плотность заряда имеют для сверхпроводящего электронного газа прямой физический смысл, то и r и q — вполне реальные вещи. Фаза столь же наблюдаема, как и r: это часть плотности тока J. Абсолютная фаза ненаблю­даема, но если градиент фазы известен во всех точках, то фаза известна с точностью до константы. И если вы определите по своему желанию фазу в одной точке, то во всех остальных точ­ках она уже определится сама собой.

Кстати заметим, что уравнение для тока можно проанализи­ровать и изящнее, если представить себе, что плотность тока и впрямь совпадает с произведением плотности заряда на ско­рость тока электронной жидкости, т. е. что J=rv. Тогда (19.18) равнозначно уравнению

Мы замечаем, что в mv-импульсе есть две части: одна связана с векторным потенциалом, а другая с поведением волновой функции. Иными словами, величина hСq— это как раз то, что мы называли р-импульсом.

§ 6. Явление Мейсснера

Теперь уже можно кое-что рассказать и о явлении сверхпро­водимости. Прежде всего здесь отсутствует электрическое сопротивление. А нет сопротивления оттого, что все электроны коллективно пребывают в одинаковом состоянии. При обычном течении тока то один электрон, то другой выбивается из равно­мерного потока, постепенно разрушая полный импульс. Здесь же не так-то просто помешать одному электрону делать то, что делают другие, ибо все бозе-частицы стремятся попасть в оди­наковое состояние. Ток, если уж он пошел, то это навеки.

Легко также понять, что если имеется кусок металла в сверхпроводящем состоянии и вы включите не очень сильное магнит­ное поле (что будет, когда оно сильное, мы обойдем молчанием), то оно не сможет проникнуть в металл. Если бы в момент созда­ния магнитного поля хоть какая-то его часть возросла внутри металла, то в нем появилась бы скорость изменения потока, а в результате и электрическое поле, которое в свою очередь немедленно вызвало бы электрический ток, который, по закону Ленца, был бы направлен на уменьшение потока. А раз все электроны будут двигаться совместно, то бесконечно малое элек­трическое поле уже вызовет достаточный ток, чтобы полностью воспротивиться наложению любого магнитного поля. Значит, если вы включите поле после того как охладили металл до сверхпроводящего состояния, внутрь оно допущено ни за что не будет.

Еще интереснее другое связанное с этим явление, экспери­ментально обнаруженное Мейсснером. Если имеется кусок металла при высокой температуре (т. е. обычный проводник) и в нем вы создали магнитное поле, а затем снизили температуру ниже критического уровня (когда металл становится сверх­проводником), то поле будет вытолкнуто. Иными словами, в сверхпроводнике возникает свой собственный ток, и как раз в таком количестве, чтобы вытолкнуть поле наружу.

Причину этого можно понять из уравнений, и сейчас я объяс­ню как. Пусть у нас имеется сплошной кусок сверхпроводящего материала (без отверстий). Тогда в любом установившемся положении дивергенция тока должна быть равна нулю, потому что ему некуда течь. Удобно будет выбрать дивергенцию А рав­ной нулю. (Конечно, полагалось бы объяснить, отчего принятие этого соглашения не означает потери общности, но я не хочу тратить на это время.) Если взять дивергенцию от уравнения (19.18), то в итоге окажется, что лапласиан от q должен быть ра­вен нулю. Но погодите, а как же с вариацией r? Я забыл упо­мянуть об одном важном пункте. В металле существует фон по­ложительных зарядов (из-за наличия атомных ионов решетки). Если плотность заряда r однородна, то не будет ни остаточного заряда, ни электрического поля. Если бы в каком-то месте электроны и скопились, то их заряд не был бы нейтрализован и возникло бы сильнейшее отталкивание, которое растолкало бы электроны по всему металлу. Значит, в обычных обстоятель­ствах плотность электронного заряда в сверхпроводниках поч­ти идеально однородна, и я вправе считать r постоянным. Да­лее, единственная возможность, чтобы С2q было равно нулю всюду внутри сплошного куска металла,— это постоянство q. А это означает, что в J не входит член с р-импульсом. Согласно выражению (19.18), ток пропорционален r, умноженному на А. Значит в куске сверхпроводящего материала ток с необходимо­стью будет пропорционален вектор-потенциалу

Перейти на страницу:

Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


9. Квантовая механика II отзывы

Отзывы читателей о книге 9. Квантовая механика II, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*