Нурбей Гулиа - Удивительная физика
Длинные радиоволны были бы крайне неудобны. Они свободно огибают препятствия метровой величины, и мы не могли бы рассмотреть предметы, видеть которые нам жизненно необходимо.
Есть еще инфракрасные лучи, способные нагревать тела, но не видимые нами. Они, казалось бы, с успехом могли бы заменить волны тех длин, которые воспринимаются глазом. Или, наконец, глаз мог бы приспособиться к ультрафиолету.
Что же, выбор узкой полоски длин волн, которую мы именуем видимым светом, именно на данном участке шкалы электромагнитных волн сделан природой случайно?
Нет, здесь далеко не случай. Прежде всего максимум излучения электромагнитных волн Солнца лежит как раз посредине видимого спектра, в его желто-зеленой области. Но не это все же главное! Излучение в соседних областях спектра тоже достаточно интенсивно.
Все дело в том, что мы живем на дне воздушного океана. Земля окружена атмосферой. Мы ее считаем прозрачной или почти прозрачной. И она является таковой в действительности, но только для очень узкого участка спектра, к восприятию которого как раз приспособился глаз. Это первое оптическое «окно» в атмосфере. Кислород сильно поглощает ультрафиолетовые лучи. Пары воды задерживают инфракрасное излучение. Длинные радиоволны отбрасываются назад в космическое пространство вследствие отражения от ионосферы.
Таким образом, в процессе естественного отбора живые организмы приобрели орган, чувствительный как раз к излучениям, имеющим наибольшую интенсивность и наиболее подходящим для своего назначения.
То, что максимум излучения Солнца точно приходится на середину оптического «окна», следует, вероятно, считать дополнительным подарком природы.
Как Архимед сжег корабли?
Существует легенда, по которой великий Архимед, якобы пользуясь зеркалами, сжег римские корабли. Об этом факте писал Диодор Сицилийский в I в. до н. э.; знаменитый римский врач Гален во II в. н. э. также упоминал об этом. В IV в. византийский математик и архитектор Анфимий в книге «О чудесных механизмах» описал зеркало Архимеда, которым тот сжег корабли. Возможно, Анфимий располагал какими-то материалами или чертежами, которые до нас не дошли.
Зеркало Архимеда (рис. 155) представляло собой огромную деревянную раму с подвижной восьмиугольной доской на ней. На этом восьмиугольнике были установлены двадцать пять больших квадратных бронзовых зеркал, по-видимому, из щитов, которые использовали тогда воины. Зеркала были установлены так, что все они посылали свой солнечный зайчик в одно и то же место на расстояние около 100 м.
Рис. 155. Зеркало Архимеда (реставрация)Таким образом, зеркало Архимеда, или «огненный палец», как еще называли его, было прообразом современных гелиоконцентраторов, широко используемых в современной солнечной энергетике (рис. 156). Но «фокус» его в отличие от современных установок был отодвинут довольно далеко, на расстояние, которое отделяло зеркала от кораблей.
Световое оружие Архимеда волновало людей последующих поколений, и в начале XVII в. его подробно проанализировали двое известных ученых – астроном И. Кеплер и физик Р. Декарт. Оба пришли к выводу, что зеркало Архимеда не могло поджечь корабли и что легенда о нем – вымысел.
Но уже в 1747 г. французский натуралист Ж. Бюффон заказывает механику Пассману устройство, подобное зеркалу Архимеда, но состоящее из 168 плоских зеркал с довольно скромной общей площадью 5,82 м2. С помощью этого устройства Бюффон воспламенил дерево на расстоянии 50 м! Этот опыт он описал в трактате «Изобретение зеркал для воспламенения предметов на больших расстояниях».
Рис. 156. Современный гелиоконцентратор для солнечной энергетикиИ еще через 200 лет после Бюффона другой вариант зеркала Архимеда воспроизвел греческий инженер Ионас Саккас. Для максимального приближения к условиям Архимеда Саккас использовал не стеклянные, а медные зеркала – щиты размером 1 × 1,5 м. В 1973 г. недалеко от Афин на берегу моря, Саккас разместил людей с этими щитами, а в море на расстоянии 50 м от берега стояла обреченная лодка. По сигналу Саккаса люди направили свои солнечные зайчики от щитов на лодку, и она через несколько минут запылала.
Итак, легенды об «огненном пальце», или зеркале Архимеда, имели под собой реальную почву. Соблазн иметь такой «огненный палец» был настолько велик, что писатель Алексей Толстой даже описал его в своем романе «Гиперболоид инженера Гарина». Гиперболоид этот представлял собой систему зеркал, отражающих лучи особых горящих пирамидок, поставленных в фокусе системы. Отражаемые лучи согласно замыслу должны были не расходиться, а идти параллельным пучком на далекие расстояния, поджигая и даже просто испепеляя все на своем пути. Увы, в таком виде подобный гиперболоид не мог выполнить этой задачи – вместо «пирамидок» нужен был «точечный» источник света (и энергии!), которого принципиально не может существовать.
В наше время роль «огненного пальца» успешно выполняет лазер. Луч его немного расходится: пройдя расстояние до Луны, например, он оставляет на ней «пятно» около 1 км диаметром! Об этом не мог мечтать и Гарин, автор фантастического гиперболоида… Как же устроен лазер, этот современный «гиперболоид»?
Рис. 157. Принципиальная схема рубинового лазера:1 – цилиндр из кристалла рубина; 2 – спиральная импульсная лампа; 3, 4 – параллельные торцы цилиндра с зеркальным слоем
Внешне лазер устроен очень просто (рис. 157). Например, кристалл 1 рубина с небольшой примесью хрома выполнялся в форме цилиндра диаметром около 3 см и длиной 20 см. Торцы цилиндра 3 и 4 строго параллельны друг другу, и на них нанесен отражающий (зеркальный) слой, причем один из этих слоев полупрозрачен: около 8 % света проходит через него, а 92 % отражается. Рубиновый стержень помещен внутри импульсной спиральной лампы 2 (называемой иногда «лампой-вспышкой»), являющейся источником возбуждающего излучения, или так называемой лампой накачки.
Известно, что порция света, или фотон, испускается атомами в момент перехода с верхнего энергетического уровня на нижний. Обычно это испускание фотонов происходит неупорядоченно – сперва один атом «даст» порцию света, затем – другой. А в лазере, в частности, рубиновом, о котором мы говорили, после того как лампа основательно «накачала» его атомы до возбужденного состояния, стоит хоть одному атому хрома выпустить хоть один фотон, как возникает целая лавина фотонов, испускаемых возбужденными атомами. Фотоны летят от одного торца кристалла до другого, отражаясь в зеркальных покрытиях, и по дороге вызывают вынужденное излучение все у новых и новых атомов хрома. И происходит это не так медленно, как описывает автор, а очень и очень быстро (скорости-то световые!) – за 10-8 – 10-10 с. Из-за такой кратковременности процесса выделенной световой энергии мощность излучения лазера достигает 109 Вт, то есть мощности крупной электростанции! Вот что значит всем атомам сработать «хором». Излучение лазера имеет не только большую мощность, но и малую расходимость. Вспомните, как луч лазера дошел до Луны почти компактным пучком!
Сейчас, кроме кристаллических лазеров, существуют лазеры газовые, а также на жидкостях-красителях. Газовые лазеры в отличие от кристаллических работают не короткими вспышками-импульсами, а непрерывно. Лазеры на красителях могут менять свою частоту (длину волны луча) в довольно широких пределах.
Лазер сейчас применяется столь широко, что даже трудно перечислить все его «специальности» – от резания, сварки, сверления металлов и камней до хирургических операций, в том числе и на глазе. Пораженный способностью лазера «выжигать» живые ткани, автор для интереса попросил друзей «выжечь» ему кусочек таковой на спине. Что ж, запахло немножко паленым, дым отсасывали особым пылесосом, боли не ощущалось. Шрама почти не осталось!
Сейчас стали модными лазерные фонарики-указки. Луч красного света ставит «отметину» на довольно большом расстоянии. К сожалению, дети балуются такими фонариками, направляя луч друг другу в глаза, что опасно. А однажды произошла буквально трагедия – молодые люди направили луч такого фонарика на незнакомого человека. А красное пятнышко этого луча поразительно похоже на пятнышко, оставляемое лазерным прицелом стрелкового оружия. И охранники этого незнакомца, который оказался «важной птицей», открыли пальбу по молодым людям с лазерными фонариками…
Отдельный интерес представляет мощное лазерное оружие. Особенно эффективно оно в космосе, где луч лазера не рассеивается, как в воздухе. Лазер «накачивается» от источников солнечной или накопленной энергии и посылает смертоносный луч, способный за сотни и тысячи километров уничтожить вражескую ракету или спутник. Так как мощности «накачки» в таких лазерах очень велики, то непосредственно энергии солнечных батарей для этого не хватает. Ее приходится запасать в особых накопителях энергии – маховичных или конденсаторных, чтобы потом выделить ее в виде мощнейшего импульса. Ведь лазер не «создает» энергию, он только преобразует ее, причем не с таким уж высоким КПД – 30—40 %.