Нурбей Гулиа - Удивительная физика
Встречаются и более сложные, буквально, психологические курьезы. В Пантелеймоновском монастыре в Новом Афоне есть настенный рисунок, который вызывает интерес всех посетителей. Называется он «Бегство в Египет», на нем изображена Богоматерь с Младенцем, сидящая на ослике и едущая, по всей вероятности, из Иудеи в Египет, где святое семейство спасалось от репрессий царя Ирода, убивавшего всех младенцев. Так вот, ослик не только пристально смотрит вам в глаза, но и всем телом поворачивается к вам, в какой бы угол вы не зашли. Автор не мог найти объяснение эффекту, пока ему не попалась книжка Я. И. Перельмана «Занимательная физика», где он прочел следующее:
«Всем, вероятно, приходилось видеть портреты, которые не только смотрят прямо на нас, но даже следят за нами глазами, обращая их в ту сторону, куда мы переходим. Эта любопытная особенность таких портретов издавна подмечена и всегда казалась многим загадочной; нервных людей она положительно пугает. У Гоголя в „Портрете“ прекрасно описан подобный случай:
«Глаза вперились в него и, казалось, не хотели ни на что другое глядеть, как только на него… Портрет глядит мимо всего, что ни есть вокруг, прямо в него – глядит к нему вовнутрь…»
Немало суеверных легенд связано с этой таинственной особенностью глаз на портретах (вспомните тот же «Портрет»), а между тем разгадка ее сводится к простому обману зрения.
Все объясняется тем, что зрачок на этих портретах помещен в середине глаза. Именно таким мы видим глаза человека, который смотрит прямо на нас; когда же он смотрит в сторону, мимо нас, то зрачок и вся радужная оболочка кажутся нам находящимися не посредине глаза, но несколько перемещенным к краю. Когда мы отходим в сторону от портрета, зрачки, разумеется, своего положения не меняют – остаются посредине глаза. А так как, кроме того, и все лицо мы продолжаем видеть в прежнем положении по отношению к нам, то нам, естественно, кажется, будто портрет повернул голову в нашу сторону и следит за нами.
Таким же образом объясняются и другие озадачивающие особенности некоторых картин: лошадь едет прямо на нас, куда бы мы ни отходили от картины; человек указывает на нас – его протянутая вперед рука направлена прямо к нам и т. п.»
Подобными приемами часто пользовались и, вероятно, пользуются и сейчас, для изготовления плакатов и реклам. Подпишите под портретом налогового инспектора на рис. 150 слова: «А ты сполна заплатил налоги?», и вы получите устрашающий плакат. Глаза налогового инспектора найдут вас везде, куда бы вы ни спрятались.
Рис. 150. «А ты сполна заплатил налоги?»И еще один курьез нашего зрения, тесно связанный с психикой, – это особенность зрения близоруких. Близорукий, без очков, разумеется, видит все расплывчато, мелкие детали ему не доступны. Лица людей, на которых он не различает морщинки, кажутся ему моложе, привлекательнее; кожа гладкой и чистой. Не различая мелочей досконально, близорукий сам домысливает их по своему вкусу. Он может сильно уменьшить возраст людей, которых видит, найти в обычных лицах неземную красоту.
Друг Пушкина, поэт Дельвиг, которого мы знаем по портрету в очках с металлической оправой и маленькими стеклами, был близорук. А в лицее (какая дикость!) ему запрещали носить очки. Может быть, поэтому он и стал лирическим поэтом: «…все женщины казались мне прекрасны; как я разочаровался после выпуска!» – вспоминал Дельвиг.
Что по бокам у радуги?
Мы все видели радугу – это очень красивое природное явление. Но можно получить радугу и самому, разложив луч света на составляющие. Какое-то подобие мы видели при блеске драгоценных камней, при падении солнечных лучей на края зеркал, на грань аквариума с водой. Но никто до Исаака Ньютона не догадывался, что белый свет состоит из различных цветов, каждый из которых, проходя через стеклянную или иную прозрачную призму, преломляется по-разному. Как сформулировал сам Ньютон: «Лучи, отличающиеся по цвету, отличаются по степени преломляемости». И, преломляя луч белого света, Ньютон впервые получил так называемый спектр.
Ньютон впервые сделал то, что до него никто не догадывался сделать – он направил на стеклянную призму луч света малого поперечного сечения. Такой «тонкий» луч Ньютон получил, пропуская луч солнечного света через маленькое отверстие в ставне (рис. 151). Солнце для этого должно быть сравнительно невысокое, лучше всего утреннее. Падая в затемненной комнате на стеклянную призму, луч преломлялся и давал на противоположной стене вертикальное удлиненное изображение с ярким радужным чередованием цветов. Как и в природной радуге, где она считалась состоящей из семи основных цветов, Ньютон также выделил семь основных цветов, считая сверху вниз: фиолетовый, синий, голубой, зеленый, желтый, оранжевый и красный. Саму радужную полоску именно Ньютон назвал спектром.
Рис. 151. Первый опыт Ньютона по разложению светаВ дальнейшем Ньютон сам усовершенствовал свой опыт, чтобы получить более чистые цвета. Ведь круглые пятна от преломленного солнечного луча частично перекрывали друг друга (рис. 151). Вместо круглого отверстия он использовал узкую щель, освещенную ярким источником. За щелью расположилась линза, дающая на экране изображение в виде узкой яркой белой полоски. Помещая на пути луча призму, Ньютон получил «чистый» спектр (рис. 152). Поставив на пути разложенного луча вторую, перевернутую, призму, Ньютон «собрал» цветные лучи опять в белый.
Рис. 152. Получение Ньютоном «чистого» спектраПосле опытов Ньютона стало действительно понятно, что такое краски, почему они дают эффект цвета. Если какой-нибудь предмет отражает все лучи, падающие на него, то этот предмет будет казаться белым. Покрывая белую бумагу слоем краски, мы «задерживаем» определенные цвета, отражая какой-нибудь конкретный цвет. Трава и листья растений кажутся зелеными потому, что они отражают лишь зеленые оттенки, поглощая все остальные. Запомним это, факт этот очень важен для поддержания жизни на Земле!
Красивый опыт Ньютона можно повторить и самим, если даже у вас нет никакой призмы. Вместо стекла можно использовать… воду. Если у вас есть аквариум, то опыт можно проделать так, как это видно из рис. 153. Окно закрыто темной бумагой или картоном, в котором проделана узкая вертикальная щель. Опыт лучше проводить утром, пока солнце невысоко.
Рис. 153. Получение спектра с помощью аквариумаЕсли лучи солнца падают круто, то опыт можно поставить по-другому. Щель в картоне следует теперь проделать горизонтально, а на пути луча поставить тазик с водой и наклонным зеркалом в нем (рис. 154). Спектр в виде вертикальной полосы на том же картоне, где и прорезана щель, будет, в отличие от ньютоновского, иметь красный цвет наверху и фиолетовый внизу.
А теперь перейдем к нашему основному вопросу: что находится по «бокам» у радуги, там, где нет никакого цвета? Первым задал себе этот вопрос известный астроном Вильям Гершель. Так же, как Ньютон, Гершель получил спектр, и в различные его участки ставил термометр. При этом на каждом цвете спектра термометр показывал температуру выше комнатной. Но особенно высокую температуру показывал термометр не в самом спектре, а уже в темноте, рядом с крайними красными лучами спектра. Сомнений не было – есть какие-то невидимые лучи, которые также преломляются в призме и несут большую энергию, чем остальные. Эти лучи были названы инфракрасными, они преломлялись меньше красных и имели длину волны больше них. Другое название этих лучей – тепловые, их выделяют нагретые тела прежде, чем они начинают испускать лучи видимого спектра.
Вслед за публикацией Гершеля об обнаруженных им инфракрасных лучах (1801 г.) последовало сообщение физика П. Риттера о невидимых лучах, но уже лежащих по другую сторону спектра, дальше фиолетовых. Названы они были ультрафиолетовыми. Именно эти лучи помогают нам загорать. Длина волны этих лучей короче фиолетовых.
Видимая часть спектра включает электромагнитные волны длиной от 4 · 10-5 см (фиолетовые) до 8 · 10-5 см (красные). Но электромагнитные волны бывают длиной от километров (радиоволны) до «жестких» рентгеновских лучей с длиной волны около 10-8 см. Есть и более короткие электромагнитные волны – так называемые гамма-лучи.
Почему же видим мы только крохотную полоску, как бы зажатую между инфракрасными и ультрафиолетовыми лучами? Ведь диапазон электромагнитных колебаний очень широк, волны по длине меняются более чем в миллиарды раз, а видим мы волны, длина которых меняется лишь в 2 раза?
Конечно, сразу можно сказать, что человеку для практических целей подходят не все длины волн. Гамма-лучи и рентгеновские лучи испускаются при особых обстоятельствах, вокруг нас их почти нет. И это очень хорошо. Рентгеновские и особенно гамма-лучи вызывают так называемую лучевую болезнь, так что человечество недолго могло бы существовать в этих лучах.