Майкл Файер - Абсолютный минимум. Как квантовая теория объясняет наш мир
Конфигурации с замкнутыми оболочками
Электронная конфигурация неона изображена на рис. 11.5. Ни один дополнительный электрон не может заселиться на вторую оболочку (орбитали с n=2) без нарушения принципа Паули. Как будет объяснено далее, элементы He, Ne, Ar, Kr и т. п., занимающие последнюю колонку в правой части Периодической таблицы, — особые. Эти элементы называются благородными газами. Все они обладают замкнутыми (заполненными) оболочками, то есть со следующего элемента, имеющего на один электрон больше, начинают заполняться орбитали с квантовым числом n на единицу больше, а значит, обладающие значительно более высокой энергией.
Рис. 11.5. Электронная конфигурация атома неона (Ne, 10). Вторая оболочка заполнена
Атомы стремятся образовывать конфигурации с замкнутыми оболочками
Теперь мы готовы использовать диаграмму энергетических уровней (см. рис. 11.1) и наши три правила расселения электронов по энергетическим уровням для объяснения строения Периодической таблицы и свойств элементов. В следующих главах будет подробно разбираться вопрос о том, что удерживает атомы вместе в составе молекул, однако очень многое можно понять на основе поразительно простого правила: атомы будут захватывать или отдавать электроны, стремясь к ближайшей конфигурации с заполненной оболочкой. Замкнутые электронные оболочки — это электронные конфигурации благородных газов, которые располагаются в правой колонке Периодической таблицы. Конфигурации с замкнутыми оболочками исключительно стабильны. Благородные газы, также называемые инертными, обладают заполненными оболочками и в основном химически инертны. Благородные газы с малыми атомными номерами — гелий, неон и аргон — вообще не образуют химических соединений. Благородные газы с более высокими атомными номерами в особых условиях можно заставить образовать небольшое число соединений. Атомы, отличные от благородных газов, меняются в направлении, приближающем их к образованию устойчивой замкнутой электронной оболочки.
Есть два способа, которыми атом может изменить число своих электронов, чтобы достичь замкнутости электронной оболочки. Первый способ — стать положительным ионом (катионом) или отрицательным ионом (анионом). Атом отдаёт один или больше своих электронов и становится положительно заряженным (катионом) или захватывает дополнительные электроны и становится отрицательно заряженным (анионом). Альтернативный путь для атома состоит в том, чтобы совместно использовать электроны с одним или несколькими другими атомами. Когда два или более атома объединяют электроны, это действует так, как если бы каждый атом обладал необходимыми ему электронами. Тем самым атом с меньшим числом электронов, чем требуется для образования следующий замкнутой электронной оболочки, получает нужное их число, но то же самое происходит и с другими атомами, задействованными в совместном использовании.
Когда атомы совместно используют электроны, чтобы получить такое их число, которое требуется для образования следующей замкнутой оболочки, это совместное использование удерживает атомы вместе. Совместное использование электронов приводит к тому, что энергия соединённых атомов становится ниже энергии отдельных недозаполненных оболочек. Это уменьшение энергии связывает атомы друг с другом. Такой тип химической связи называется ковалентной связью. Ковалентные связи представляют собой основной тип связи в химии. Природа ковалентной связи подробно разбирается в главе 12 на примере простейшей молекулы — водорода, а более сложные молекулы обсуждаются в последующих главах.
Свойства атомов
Переходя к обсуждению свойств атомов, основанному на Периодической таблице, начнём с водорода. Водород — это особый атом, поскольку у него лишь один электрон, и это первый элемент в Периодической таблице. В первой строке Периодической таблицы гелий имеет заполненную оболочку с двумя электронами на 1s-орбитали. Водород может обзавестись замкнутой конфигурацией оболочки, как у гелия, позаимствовав электрон у другого атома в порядке совместного использования. Например, один атом водорода может совместно использовать электрон с другим атомом водорода, образовав молекулу водорода. Обозначение молекулы водорода H2. Индекс указывает, сколько атомов данного типа содержится в молекуле. Благодаря совместному использованию электронов каждый из атомов водорода ощущает себя так, как если бы у него было два электрона, то есть замкнутая электронная оболочка, подобная той, что имеется у гелия.
Как мы увидим далее, водород может образовывать другие молекулы, но поскольку ему требуется лишь один электрон, чтобы получить заполненную электронную оболочку, как у гелия, он может образовывать одну химическую связь. Гелий имеет замкнутую оболочку. Он не способен образовывать какие-либо химические связи. Не существует молекул, в которые входил бы атом гелия. Почему именно так происходит, описывается в главе 12. Гелий замыкает первый период.
Следующий элемент — это литий (Li), который располагается в Периодической таблице непосредственно под H. Li может получить заполненную конфигурацию оболочки, как у гелия, отдав электрон. Поэтому Li образует положительные ионы Li1+. В твёрдом виде Li является металлом. Металлы способны проводить электричество, а значит, электроны могут свободно перемещаться от одного атома к другому. Природа металлов и электропроводности будет обсуждаться в главе 19. Металлы отличаются тем свойством, что, будучи одиночными атомами, они легко могут отдать один или несколько электронов. Электрон, отданный литием, должен куда-то деться. Он перейдёт к другому атому, которому нужно получить электрон, чтобы образовать отрицательный ион. Таким образом, для образования иона Li1+ литию нужен партнёр (см. обсуждение ниже, где мы добираемся до другой стороны Периодической таблицы).
Следующий элемент — это бериллий. Бериллий будет отдавать два электрона, чтобы вернуться к конфигурации гелия с замкнутой электронной оболочкой. Поэтому бериллий будет образовывать ионы с зарядом +2 (Be2+). Поскольку бериллий легко отдаёт электроны, твёрдый бериллий является металлом. Следующий элемент — это бор. Он может отдать электроны, чтобы вернуться к конфигурации гелия с замкнутой оболочкой. Поэтому он образует ионы с зарядом +3 и является металлом.
Дальше всё изменяется. Следующий элемент — это углерод. Ему понадобилось бы отдать четыре электрона, чтобы вернуться к конфигурации гелия, но он также мог бы присоединить четыре электрона, чтобы перейти к следующей замкнутой конфигурации оболочки, такой как у неона. Как показано на рис. 11.5, атом Ne обладает второй по счёту замкнутой электронной оболочкой. У него два электрона находятся на 1s-орбитали, а затем оболочка с n=2 заполнена двумя электронами на 2s-орбиталях и шестью электронами на трёх 2p-орбиталях. Вместо того чтобы отдавать так много электронов, возвращаясь к конфигурации гелия, атом C может двинуться вперёд — к конфигурации неона, присоединив четыре электрона путём создания четырёх ковалентных связей.
Например, метан (природный газ) имеет молекулу CH4, в которой каждый атом H связан с центральным атомом C. Углерод совместно использует четыре электрона, по одному от каждого атома водорода, и тем самым получает замкнутую электронную конфигурацию неона. Каждый атом H использует один электрон совместно с атомом C, получая тем самым дополнительный электрон для формирования замкнутой конфигурации электронной оболочки, как у гелия. Это очень важно. За счёт ковалентных связей (совместного использования электронов) каждый атом получает замкнутую конфигурацию оболочки. Другой чрезвычайно важный факт состоит в том, что атом С всегда создаёт четыре связи, поскольку нуждается в совместном использовании четырёх электронов для достижения конфигурации неона. Этот факт играет фундаментальную роль для органической химии и биохимии, что подробно обсуждается в последующих главах.
Следующий элемент — азот. Атом N нуждается в трёх электронах, чтобы достичь конфигурации неона, поэтому он образует три ковалентные связи. Например, он может соединяться с атомами H, образуя молекулу NH3 — аммиак. Кислороду нужно два электрона, чтобы получить замкнутую конфигурацию оболочки неона, так что он образует две связи и, например, участвует в образовании молекулы воды (H2O). Таким образом, из этих простых соображений уже становится понятна последовательность соединений: CH4, NH3 и H2O. Связи, образуемые с участием атомов C, N и O, будут обсуждаться в следующих главах, где идёт речь о молекулах, содержащих эти атомы, но они всегда образуют 4, 3 и 2 связи соответственно.