Сто лет недосказанности: Квантовая механика для всех в 25 эссе - Алексей Михайлович Семихатов
Время реальных (а не мысленных) экспериментов настало не сразу. Оно, собственно, наставало постепенно: эксперименты по проверке неравенств Белла выполнялись со все возрастающей точностью и строгостью на протяжении нескольких десятилетий. В основном проверялись неравенства Белла, в которых фигурируют коэффициенты корреляции, т. е. статистика по сериям измерений. Итог этим, уже прошедшим десятилетиям подвела Нобелевская премия 2022 г.
Неравенства Белла в природе нарушаются, причем как раз в такой степени, в какой это предсказывает квантовая механика. Следовательно, происходящее в природе нельзя объяснить локальными скрытыми параметрами – раздачей запутанным электронам значений их спинов вдоль всех направлений в момент создания запутанной пары. Примечательна реакция на это самого Белла, который продолжил приведенное в конце предыдущей главы высказывание такими словами:
Мне жаль, что идея Эйнштейна не работает. Разумная вещь просто не работает.
Правда, чтобы утверждать такое с уверенностью, надо было «закрыть лазейки» – исключить в принципе возможные физические явления, которые могли бы обеспечить нужное нарушение неравенств Белла при использовании локальных скрытых параметров.
Во-первых, следовало полностью закрыть «коммуникационную» лазейку – передачу сигнала от электрона, первым подвергшегося измерению, ко второму. Для этого требуется, чтобы измерения, производимые над левым и правым электронами, были разделены в пространстве (подальше друг от друга) и во времени (поближе друг к другу) так, чтобы скорости света было недостаточно для передачи информации между измерениями. Это удалось сделать.
Реальные опыты, как уже упоминалось, намного чаще ставились на фотонах, чем на электронах. Для измерений там нужны уже не приборы Штерна – Герлаха, а полярометры, но теоретические различия в устройстве запутанных состояний минимальны, и я продолжу как ни в чем не бывало говорить об электронах. (Опыты с электронами тоже ставили, там имелись свои технологические сложности, но были и преимущества, в первую очередь – надежное детектирование, что было важно для закрытия одной из лазеек; в 2015 г. несколько лазеек были впечатляющим образом одновременно закрыты в эксперименте, где расстояние между запутанными электронами составило 1300 м.)
У коммуникационной лазейки есть и более тонкий вариант – «создание шпаргалки на ходу». Как мы видели, неравенства Белла относятся к ситуации, где используется несколько различных направлений ориентации приборов. В принципе, можно представить себе, что в момент выбора этих направлений какой-то сигнал о сделанном выборе доходит до устройства, создающего запутанную пару, и полученная информация отражается в скрытых параметрах. Эту лазейку тоже закрыли (установки приборов менялись после того, как запутанная пара была создана).
Еще более изощренная лазейка основана вот на каком рассуждении: что, если экспериментатор не свободен в выборе ориентации приборов? В ранних экспериментах переключения между различными ориентациями выполнялись упорядоченно и могли поэтому дать повод для подозрений. В более поздних опытах они управлялись квантовыми генераторами случайных чисел, что по идее гарантирует настоящую случайность. Но если мир управляется скрытыми параметрами, то это же верно и для самих квантовых генераторов случайных чисел – а тогда можно представить себе какую-то общую причину, которая действовала в прошлом и повлияла как на скрытые параметры в момент создания запутанной пары, так и на производство квантово-случайных величин, определяющих ориентацию приборов. Достаточно лишь некоторой степени такого влияния, чтобы скрытые параметры позволили сымитировать квантовую механику, т. е. обеспечить требуемое нарушение неравенств Белла.
30 ноября 2016 г. более ста тысяч добровольцев по всему миру играли в специальную компьютерную игру с целью произвести «как можно более случайный» набор данных, которые затем использовались для выбора установок в приборах. Неравенства Белла нарушались в эксперименте и на этот раз. Если продолжать отстаивать наличие скрытых параметров и управляющей ими общей причины, то следует восхититься тем, как ловко она поселяется в головах нужных людей и каким весьма специальным способом руководит их действиями.
В опытах другого типа для выбора ориентации в измерительных приборах использовался свет от далеких космических объектов, в окончательном варианте – от двух квазаров, находящихся на расстоянии 7,78 млрд и 12,21 млрд световых лет от нас. Ориентации, используемые при измерениях, переключались в зависимости от текущих характеристик света, приходящего от этих двух источников в два телескопа. Снова были установлены нарушения неравенств Белла. Если какая-то прошлая причина все же обеспечивает такое нарушение путем «подтасовки» скрытых параметров, то она должна была действовать в таком далеком прошлом, чтобы влиять на оба квазара. С учетом расстояния между квазарами (а также расширения Вселенной) это прошлое отодвинулось на 13,15 млрд лет назад. Пожалуй, о вселенском заговоре прошлых причин, согласованно действующих на скрытые параметры с целью обмануть экспериментатора, стоит все же забыть.
Все неэкзотические лазейки были постепенно закрыты. Пример экзотической – ретрокаузальность. Она сводится к предположению, что в момент измерения возникает сигнал, который распространяется назад во времени к моменту создания запутанной пары и сообщает об установках приборов, используемых при измерениях. Значения скрытых параметров (содержание «шпаргалки») тогда могли бы подстраиваться под эти установки таким образом, чтобы неравенства Белла нарушались именно так, как велит квантовая механика. Вообще-то передача сигнала назад во времени позволит вам сдать практически любой экзамен с минимальной затратой времени и сил: получите ретрокаузальный сигнал о том, какой билет вам достанется, и подготовьте ответ именно на него. Без колебаний поступайте так при каждой возможности.
Из экспериментов по проверке (нарушения) неравенств Белла, а также из связанных с этим рассуждений, большинство исследователей сделало вывод, что в природе нарушается локальный реализм. В самых общих терминах реализм означает, что объекты обладают свойствами до и независимо от наблюдений, в которых они проявляют эти свойства, а локальность – что любая коммуникация между ними ограничена конечной скоростью распространения сигнала в пространстве, и поэтому удаленные объекты не оказывают друг на друга немедленного воздействия{69}.
На очереди тогда следующая проблема: нарушается реализм или локальность (или и то и другое)? Различные интерпретации квантовой механики указывают здесь на разное, добавляя интриги в вопрос об устройстве квантовой реальности. Проще всего с бомовской механикой (глава 13): там очевидным образом нарушается локальность, но сохраняется реализм (пусть и с оговорками, которые мы обсуждали в конце главы 14; экспериментально установленное нарушение неравенств Белла, кстати, показывает, что нелокальность бомовской механики – не дефект, а необходимость). Забегая вперед: локальность нарушается и в оригинальном «допридумывании» квантовой механики, которое обсуждается в главе 20. Копенгагенскую интерпретацию, видимо, следует интерпретировать таким образом, что в ней нарушается реализм, и это же в общем верно для кьюбизма (глава 12), а кроме того, и для «игры в классики», которая ждет нас в главе 19. Насчет многомировых интерпретаций мнения расходятся: в доказательстве неравенств Белла используются стандартные представления о вероятностях, а там вероятности становятся сложным понятием, поскольку «со стопроцентной вероятностью случается каждый исход», так что сумма вероятностей в некотором роде превышает сто процентов; другое условие, используемое при доказательстве неравенств Белла, – однозначные показания каждого прибора, а с пониманием этого в условиях делящихся вселенных тоже не все просто.
Если высказываться более широко, не слишком погружаясь в детали, то можно сказать, что в определенных обстоятельствах квантовые объекты существуют без некоторых свойств, обзаводясь свойствами только в момент измерения. При этом они демонстрируют нелокальную согласованность этих свойств, обеспечение которой не-квантовыми средствами потребовало бы сверхсветовых сигналов.
Такая картина мира, разумеется, совсем не понравилась бы Эйнштейну. Квантовая механика тем не менее проявила к нему должное почтение, не вступив в прямой конфликт со специальной теорией относительности! Корреляции между запутанными частицами нельзя использовать для отправки сверхсветовых СМС. Причина близка к той, что обсуждалась в связи с бомовской механикой в главе 14: экспериментатор может выбирать только направление, вдоль которого измеряется спин, но не властен над тем, будет ли результатом измерения спин «вперед» или «назад» вдоль этого направления. У экспериментатора, другими словами, нет возможности «нажать на клавишу», которая обеспечила бы одному электрону спин «вперед», из-за чего его запутанный собрат приобрел бы спин «назад» и помощник экспериментатора в другом углу Вселенной моментально получил бы таким образом один бит информации.