Kniga-Online.club

Ричард Фейнман - 6. Электродинамика

Читать бесплатно Ричард Фейнман - 6. Электродинамика. Жанр: Физика издательство неизвестно, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Вы можете подумать: но сила, действующая на электроны, зависит от того, насколько быстро движется провод; быть мо­жет, если бы провод двигался достаточно медленно, этой элект­рической энергией можно было бы вообще пренебречь. Дейст­вительно, скорость, с какой высвобождается электрическая энер­гия, пропорциональна скорости провода, но все же полная выделенная энергия пропорциональна к тому же еще и времени, в течение которого проявлялась эта скорость. В итоге полная выделенная электрическая энергия пропорциональна произве­дению скорости на время, а это как раз и есть пройденное расстояние. Каждому пройденному в поле расстоянию отвечает заданное, и притом одно и то же, количество электрической работы.

Возьмем кусок провода единичной длины, по которому течет ток I. Провод движется перпендикулярно самому себе и маг­нитному полю В со скоростью v;провод. Благодаря наличию тока сами электроны обладают скоростью дрейфа vдрейфвдоль провода. Компонента магнитной силы, действующей на каждый электрон в направлении дрейфа, равна qe vпровод В. Значит, скорость, с какой производится электрическая работа, равна Fvдрейф = (qevпроводВ)vдрейф. Если на единице длины провода имеется N проводящих электронов, то вся величина электрической работы, производимой в секунду, такова:

Но Nqеvдрейф равно току I в проводе, так что

И поскольку ток поддерживается неизменным, то силы, действующие на электроны проводимости, не ускоряют их; электрическая энергия переходит не к электронам, а к тому источнику, который сохраняет силу тока постоянной.

Но заметьте, что сила, действующая на провод, равна IB; значит, IBvпровод — это механическая работа, выполняемая над проводом в единицу времени, dUмех/dt = IBvпровод. Отсюда мы заключаем, что механическая работа перемещения провода в точности равна электрической работе, производимой над источником тока, так что энергия петли остается постоянной!

Это не случайность. Это следствие закона, с которым мы уже знакомы. Полная сила, действующая на каждый из заря­дов в проводе, равна

Скорость, с которой производится работа, равна

(15.12)

Если электрического поля нет, то остается только второе слага­емое, а оно всегда равно нулю. Позже мы увидим, что изменение магнитных полей создает электрические поля, так что наши рас­суждения применимы лишь к проводам в постоянных магнит­ных полях.

Но тогда почему же принцип виртуальной работы дает правильный ответ? Потому, что пока мы не учитывали полную энергию Вселенной. Мы не включали в рассмотрение энергию тех токов, которые создают магнитное поле, с самого начала присутствующее в наших рассуждениях.

Но представим себе полную систему, наподобие изображен­ной на фиг. 15.3,а, где петля с током I вдвигается в магнитное поле B1 созданное током I2 в катушке. ТокI1, текущий по петле, тоже будет создавать какое-то магнитное поле В2 близ катушки. Если петля движется, то поле В2 изменяется. В следующей главе мы увидим, что изменяющееся магнитное поле создает поле Е, и это поле действительно начнет действовать на заряды в катушке. Эту энергию мы обязаны включить в наш сводный баланс энергий.

Мы, конечно, могли бы подождать говорить об этом новом вкладе в энергию до следующей главы, но уже сейчас можно оценить его, если применить соображения принципа относи­тельности.

Фиг. 15.3. Вычисление энергии маленькой петли в магнитном поле.

Приближаем петлю к неподвижной катушке и знаем, что электрическая энергия петли в точности равна и противо­положна по знаку произведенной механической работе. Иначе говоря,

Теперь предположим, что мы смотрим на происходящее с другой точки зрения: будем считать, что петля покоится, а катушка приближается к ней. Тогда катушка движется в поле, создан­ном петлей. Те же рассуждения приведут к выражению

Механическая энергия в обоих случаях одна и та же — она определяется только силой, действующей между двумя конту­рами.

Сложение двух уравнений дает

Полная энергия всей системы равна, конечно, сумме двух элект­рических энергий и взятой один раз механической энергии. В итоге выходит

Полная энергия всей системы — это на самом деле Uмех со знаком минус. Если нам нужна, скажем, полная энергия магнитного диполя, то следует писать

И только тогда, когда мы потребуем, чтобы все токи оставались постоянными, можно использовать лишь одну из частей энергии Uмех (всегда равную истинной анергии со знаком минус) для вычисления механических сил. В более общих задачах надо соблюдать осторожность, чтобы не забыть ни одной из энергий. Сходное положение наблюдалось и в электростатике. Мы показали там, что энергия конденсатора равна Q2/2C. Когда мы применяем принцип виртуальной работы, чтобы найти силу, действующую между обкладками конденсатора, то изменение энергии равно Q2/2, умноженному на изменение в 1/С, т. е.

(15.14)

А теперь предположим, что нам надо было бы подсчитать работу, затрачиваемую на сближение двух проводников, но при другом условии — что напряжение между ними остается постоянным. Тогда правильную величину силы мы могли бы получить из принципа виртуальной работы, если бы поступили немного искусственным образом. Раз Q = CV, то полная энер­гия равна 1/2 CV2. Но если бы мы ввели условную энергию, равную —1/2CV2, то принцип виртуальной работы можно было бы применить для получения сил, полагая изменение этой условной энергии равным механической работе (это при условии, что напряжение V

считается постоянным). Тогда

(15.15)

а это то же самое, что написано в уравнении (15.14). Мы полу­чаем правильный ответ, хотя пренебрегаем работой, которую электрическая система тратит на постоянное поддержание напряжения. И здесь опять электрическая энергия ровно вдвое больше механической и имеет обратный знак.

Итак, если мы ведем расчет искусственно, пренебрегая тем фактом, что источник потенциала должен тратить работу на то, чтобы напряжение оставалось неизменным, то все равно мы приходим к правильному результату. Это в точности соответ­ствует положению дел в магнитостатике.

§ 3. Энергия постоянных токов

Зная, что Uполн = -Uмех, используем этот факт, чтобы найти истинную энергию постоянных токов в магнитных полях. Начать можно с истинной энергии небольшой токовой петельки. Обозначая Uполнпросто через U, напишем

U = m·В.(15.16)

Хотя эту энергию мы подсчитали только для плоской прямо­угольной петли, все это верно и для плоской петельки произ­вольной формы.

Энергию контура произвольной формы можно найти, пред­ставив себе, что он состоит из небольших токовых петель. Ска­жем, имеется провод в форме петли Г (фиг. 15.4). Натянем на эту петлю поверхность S, а на ней наметим множество петелек, каждую из которых можно считать плоской. Если заставить ток I циркулировать по каждой петельке, то в итоге выйдет то же самое, как если бы ток шел только по петле Г, ибо токи на всех внутренних линиях взаимно уничтожатся. Система не­больших токов физически не будет отличима от исходного контура, и энергия должна быть той же, т. е. должна быть равна сумме энергий всех петелек.

Если площадь каждой петельки Dа, то ее энергия равна IDаBn, где Bn — компонента В, нормальная к Dа. Полная энергия равна U = SIBnDа.

Фиг. 15.4. Энергию большой петли в магнитном поле можно считать суммой энергий маленьких петелек.

В пределе, когда петли становятся бесконечно малыми, сумма превращается в интеграл, и

(15.17)

где n — единичная нормаль к da,

Если мы положим В = СXA, то поверхностный интеграл можно будет связать с контурным (по теореме Стокса):

Перейти на страницу:

Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


6. Электродинамика отзывы

Отзывы читателей о книге 6. Электродинамика, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*