Ричард Фейнман - 3. Излучение. Волны. Кванты
Возникает интересный вопрос: предположим, что имеются два источника с несколько разными частотами излучения или несколько разными длинами волн; насколько близкими должны быть эти частоты, чтобы по дифракционной картине нельзя было отделить одну частоту от другой? Красные и синие линии четко различаются. А вот если один луч красный, а другой чуть-чуть покраснее, самую малость. Насколько близки они должны быть? Ответ дается величиной, которая называется разрешающей способностью решетки. Ниже мы используем один из способов ее определения.
Предположим, что удалось найти дифракционный максимум для лучей определенного цвета, расположенный под некоторым углом. Если мы изменим длину волны, то и значение фазы (2pdsinq)/l будет иным и максимум, разумеется, возникнет при каком-то другом угле. Именно поэтому красные и синие полосы на экране разделяются. Насколько должны отличаться углы, чтобы мы смогли различить два разных максимума? Если верхушки максимумов совпадают, мы, конечно, не сможем различить их один от другого. Если же максимумы достаточно далеки друг от друга, то на картине распределения света возникают два горба.
Фиг. 30.6. Иллюстрация критерия Рэлея. Максимум одного распределения совпадает с минимумом другого.
Чтобы заметить, когда начинает вырисовываться двойной горб, лучше всего воспользоваться простым правилом, называемым обычно правилом (или критерием) Рэлея, (фиг. 30.6). По этому правилу первый минимум на дифракционной картине для одной длины волны должен совпадать с максимумом для другой длины волны. Теперь уже нетрудно вычислить разность длин волн, когда один минимум в точности «садится» на максимум другого пучка. Лучше всего для этого воспользоваться геометрическим способом.
Чтобы возник максимум при длине волны l', расстояние D (см. фиг. 30.3) должно быть равно nl', а чтобы возник максимум порядка m, расстояние D должно быть равно mnl'. Другими словами, (2pd/l'), sinq=2pm и ndsinq, равное D, естьl', умноженная на тп, или соответственно mnl'. Если мы хотим, чтобы под тем же углом для другого луча с длиной волны l, появился минимум, расстояние D должно превышать тпl ровно на одну длину волны l, т. е. D=тпl+l =тпl'. Отсюда, полагая l'= l+dl,, получаем
(30.9)
Отношение l/dl, называется разрешающей способностью дифракционной решетки; она равна, как видно из формулы, полному числу линий в решетке, умноженному на порядок максимума луча. Легко убедиться, что эта формула эквивалентна следующему утверждению: разность частот должна быть равна обратной величине разности времен прохождения для самых крайних интерферирующих лучей
sv=1/T
Полезно запомнить именно эту общую формулу, потому что она применима не только для решеток, но и для любых устройств, тогда как вывод формулы (30.9) связан со свойствами дифракционных решеток.
§ 4. Параболическая антенна
Рассмотрим теперь еще один вопрос, связанный с разрешающей способностью. Речь идет об антеннах радиотелескопов, использующихся для определения положения источников радиоволн на небе и их угловых размеров. Если бы мы взяли нашу старую антенну и с ее помощью приняли сигналы, то, конечно, не могли бы сказать, откуда они пришли. А знать, где находится источник, очень важно. Можно, конечно, покрыть всю Австралию проводами-диполями, расположенными на равном расстоянии друг от друга. Затем подсоединить все диполи к одному приемнику так, чтобы уравнять запаздывание сигналов в соединительных проводах. Тогда сигналы от всех диполей придут к приемнику с одной фазой. Что в результате получится? Если источник расположен достаточно далеко и прямо над нашей системой, то сигналы от всех антенн придут к приемнику в фазе.
Но предположим, что источник расположен под небольшим углом 9 к вертикали. Тогда сигналы, принятые различными антеннами, будут немного сдвинуты по фазе. В приемнике все эти сигналы с разными фазами складываются, и мы ничего не получим, если только угол 6 достаточно велик. Но как велик должен быть этот угол? Ответ: мы получим нуль, если угол D/L=0 (см. фиг. 30.3) соответствует сдвигу фаз в 360°, т. е. если D равно длине волны l.
Этот результат легко понять, если учесть, что векторы, соответствующие сигналам от разных антенн, образуют замкнутый многоугольник и их сумма тогда обращается в нуль. Наименьший угол, который антенное устройство длиной L еще может разрешить, есть Q=l/L. Заметим, что кривая чувствительности антенны при приеме имеет точно такой же вид, как и распределение интенсивности, даваемое антеннами-передатчиками. Здесь проявляется так называемый принцип обратимости. Согласно этому принципу, для любых антенных устройств, при любых углах и т. п. справедливо правило: относительная чувствительность в разных направлениях совпадает с относительной интенсивностью для тех же направлений, если заменить приемник передатчиком.
Бывают антенные устройства и другого типа. Вместо того чтобы выстраивать целую систему диполей с кучей соединительных проводов между ними, можно расположить их по кривой, а приемник поставить в такую точку, где он мог бы фиксировать отраженные сигналы. Кривая выбирается с таким хитрым расчетом, чтобы все лучи от далекого источника после рассеяния доходили к приемнику за одно и то же время (см. фиг. 26.12). Значит, кривая должна быть параболой; тогда если источник находится на ее оси, то в фокусе возникает большая интенсивность рассеянного излучения. Легко найти разрешающую способность такого устройства. Расположение антенн по параболе здесь несущественно. Параболическая форма выбрана просто для удобства, она позволяет собирать все сигналы за одинаковое время и притом без проводов. Минимальный угол разрешения такого устройства по-прежнему равен q =l/L, где L — расстояние между крайними антеннами. Этот угол не зависит от промежутка между соседними антеннами, они могут быть размещены очень близко одна от другой, фактически вместо системы антенн можно даже взять сплошной кусок металла. В принципе это то же самое, что и зеркало телескопа. Итак, мы нашли разрешающую способность телескопа! (Иногда разрешающую способность пишут в виде q=1,22 l/L, где L — диаметр телескопа. Множитель 1,22 появляется по следующей причине: при выводе формулы q =l/L интенсивность всех диполей считалась одинаковой независимо от их положения, но, поскольку телескопы обычно делают круглыми, а не квадратными, интенсивность сигналов от краев меньше, чем от середины; в отличие от случая квадратного сечения края дают относительно малый вклад. Следовательно, эффективный диаметр короче истинного, что и учитывается множителем 1,22. На самом же деле такая точность в формуле для разрешающей способности кажется слишком педантичной.)
§ 5, Окрашенные пленки; кристаллы
Выше были рассмотрены некоторые эффекты, возникающие при интерференции нескольких волн. Но можно привести ряд других примеров, основной механизм которых слишком сложен, чтобы говорить о нем в данный момент (мы обсудим его впоследствии), а пока разберем возникающие в этих примерах интерференционные явления.
Например, когда свет падает на поверхность среды с показателем преломления n по нормали к поверхности, то часть света отражается. Причину отражения сейчас нам было бы трудно понять; мы поговорим о ней позже. Сейчас же предположим, что факт отражения света при входе и выходе света из преломляющей среды нам уже известен. Тогда при отражении света от тонкой пленки возникнет совокупность двух волн, отраженных от передней и задней поверхностей пленки; при достаточно малой толщине пленки эти волны будут интерферировать, усиливая или ослабляя друг друга в зависимости от знака разности фаз. Например, может случиться, что красный свет будет отражаться с усилением, а синий свет, который имеет другую длину волны,—с ослаблением, так что отраженный луч будет иметь яркую красную окраску.
Если мы изменим толщину пленки и будем наблюдать отражение, скажем, в тех местах, где пленка потолще, то сможем увидеть обратную картину, т. е. красные волны будут ослабляться, а синие нет, и пленка будет казаться синей, или зеленой, или желтой, в общем любого цвета. Таким образом, мы видим тонкую пленку окрашенной, а если будем смотреть на нее под другим углом, то расцветка будет иной, так как время прохождения света через пленку меняется с изменением угла зрения. Так становится понятной причина возникновения сложной цветовой гаммы на пленках нефти, мыльных пузырях и во многих других подобных случаях. Сущность явления всюду одна — сложение волн с разными фазами.