Kniga-Online.club
» » » » Ричард Фейнман - 5a. Электричество и магнетизм

Ричард Фейнман - 5a. Электричество и магнетизм

Читать бесплатно Ричард Фейнман - 5a. Электричество и магнетизм. Жанр: Физика издательство неизвестно, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Вернемся к частному случаю плоского конденсатора; мы можем взять формулу для емкости, выведенную в гл. 6:

(8.16)

где А—площадь каждой обкладки. Если промежуток уве­личится на Dz, то

Из (8.14) тогда следует, что сила притяжения между двумя обкладками равна

(8.17)

Взглянем на уравнение (8.17) повнимательнее и подумаем, нельзя ли сказать, как возникает эта сила. Если заряд на одной из обкладок мы запишем в виде

то (8.17) можно будет переписать так:

Или поскольку поле между пластинами равно

то

(8.18)

Можно было сразу догадаться, что сила, действующая на одну из пластин, будет равна заряду Q этой пластины, умножен­ному на поле, действующее на заряд. Но что удивляет, так это множитель 1/2. Дело в том, что Е0 это не то поле, которое действует на заряды. Если вообразить, что заряд на поверх­ности пластины занимает какой-то тонкий слой (фиг. 8.4), то поле будет меняться от нуля на внутренней границе слоя до Е0 в пространстве снаружи пластин. Среднее поле, действующее на поверхностные заряды, равно Е0/2. Вот отчего в (8.18) стоит множитель 1/2.

Вы должны обратить внимание на то, что, рассчитывая вир­туальную работу, мы предположили, что заряд конденсатора постоянен, что конденсатор не был электрически связан с дру­гими предметами и полный заряд не мог изменяться.

Фиг. 8.4. Поле у поверхности проводника меняется от нуля до E0=s/e0, когда пересечен слой по­верхностного заряда. 1 — проводящая пластина; 2 — слой поверхностного заряда.

А теперь пусть мы предположили, что при виртуальных пе­ремещениях конденсатор поддерживается при постоянной раз­ности потенциалов. Тогда мы должны были бы взять

и вместо (8.15) мы бы имели

что приводит к силе, равной по величине той, что была получена в уравнении (8.15) (так как V = Q/C), но с противоположным знаком!

Конечно, сила, действующая между пластинами конденса­тора, не меняет свой знак, когда мы отсоединяем конденсатор от источника электричества. Кроме того, мы знаем, что две плас­тины с разноименными электрическими зарядами должны при­тягиваться. Принцип виртуальной работы во втором случае был применен неправильно, мы не приняли во внимание виртуаль­ную работу, производимую источником, заряжающим конден­сатор. Это значит, что для того, чтобы удержать потенциал при постоянном значении V, когда меняется емкость, источник элект­ричества должен снабдить конденсатор зарядом VDC. Но этот заряд поступает при потенциале V, так что работа, выполняе­мая электрической системой, удерживающей заряд постоянным, равна V2DC. Механическая работа .FDz плюс эта электрическая работа V2DC вместе приводят к изменению полной энергии кон­денсатора на 1/2V2DC. Поэтому на механическую работу, как и прежде, приходится FDz=-1/2 V2DC.

§ 3. Электростатическая энергия ионного кристалла

Рассмотрим теперь применение понятия электростатической энергии в атомной физике. Мы не можем запросто измерять силы, действующие между атомами, но часто нас интересует разница в энергиях двух расстановок атомов (к примеру, энергия химических изменений). Так как атомные силы в основе своей — это силы электрические, то и химическая энергия в главной своей части — это просто электростатиче­ская энергия.

Рассмотрим, например, электростатическую энергию ионной решетки. Ионный кристалл, такой, как NaCl, состоит из поло­жительных и отрицательных ионов, которые можно считать жесткими сферами. Они электрически притягиваются, пока не соприкоснутся; затем вступает в дело сила отталкивания, кото­рая быстро возрастает, если мы попытаемся сблизить их теснее.

Для первоначального приближения вообразим себе совокуп­ность жестких сфер, представляющих атомы в кристалле соли. Строение такой решетки было определено с помощью дифрак­ции рентгеновских лучей. Эта решетка кубическая — что-то вроде трехмерной шахматной доски. Сечение ее изображено на фиг. 8.5. Промежуток между ионами 2,81 Е (или 2,81·10-8 см).

Если наше представление о системе правильно, мы должны уметь проверить его, задав следующий вопрос: сколько понадо­бится энергии, чтобы разбросать эти ионы, т. е. полностью раз­делить кристалл на ионы? Эта энергия должна быть равна теп­лоте испарения соли плюс энергия, требуемая для диссоциации молекул на ионы. Полная энергия разделения NaCl на ионы, как следует из опыта, равна 7,92 эв на молекулу.

Фиг. 8.5. Поперечный разрез кристалла соли в масштабе нескольких атомов.

В двух перпендикулярных к плоскости рисунка сечениях будет такое же шахматное расположение ионов Na и Сl (см. вып. 1, фиг. 1.7).

Пользуясь коэффициентом перевода

и числом Авогадро (количество молекул в грамм-молекуле)

можно представить энергию испарения в виде

Излюбленная единица энергии, которой пользуются физико-химики,— килокалория, равная 4190 дж; так что 1 эв на молеку­лу — это все равно что 23 ккал/моль. Химик сказал бы поэтому, что энергия диссоциации NaCl равна

Можем ли мы получить эту химическую энергию теоретиче­ски, подсчитывая, сколько работы понадобится для того, чтобы распотрошить кристалл? По нашей теории она равна сумме по­тенциальных энергий всех пар ионов. Проще всего составить себе представление об этой энергии, выбрав какой-то один ион и подсчитав его потенциальную энергию по отношению ко всем прочим ионам. Это даст удвоенную энергию на один ион, потому что энергия принадлежит парам зарядов. Если нам нужна энер­гия, связанная с одним каким-то ионом, то мы должны взять полусумму. Но на самом деле нам нужна энергия на молекулу, содержащую два иона, так что вычисляемая нами сумма прямо даст нам энергию на молекулу.

Энергия иона по отношению к его ближайшему соседу равна —e2/a, где e2=q2e/4pe0, а а — промежуток между центрами ио­нов. (Мы рассматриваем одновалентные ионы.) Эта энергия рав­на —5,12 эв; мы уже видим, что ответ получается правильного порядка величины. Но нам еще предстоит подсчитать бесконеч­ный ряд членов.

Начнем со сложения энергий всех ионов, лежащих по пря­мой. Считая ион, отмеченный на фиг. 8.5 значком Na, нашим выделенным ионом, сперва рассмотрим те ионы, которые лежат на одной с ним горизонтали. Там есть два ближайших к нему иона хлора с отрицательными зарядами, на расстоянии я от Na каждый. Затем идут два положительных иона на расстояниях 2 а и т. д. Обозначая эту сумму энергий U1, напишем

(8.19)

Ряд сходится медленно, так что численно его оценить трудно,

но известно, что он равен ln2. Значит,

(8.20)

Теперь перейдем к ближайшей линии, примыкающей сверху. Ближайший ион отрицателен и находится на расстоянии а. Затем стоят два положительных на расстоянияхЦ2а. Следующая пара — на расстоянии Ц5а, следующая— наЦ10 а и т. д. Для всей линии получается ряд

(8.21)

Таких линий четыре: выше, ниже, спереди и сзади. Затем име­ются четыре линии, которые являются ближайшими по диагона­ли, и т. д. и т. д.

Если вы терпеливо произведете подсчеты для всех линий и затем все сложите, то увидите, что итог таков:

Это число немного больше того, что было получено в (8.20) для первой линии. Учитывая, что е2/а=-5,12 эв, мы получим

Наш ответ приблизительно на 10% больше экспериментально наблюдаемой энергии. Он показывает, что наше представление о том, что вся решетка скрепляется электрическими кулоновскими силами, в основе своей правильно. Мы впервые получили спе­цифическое свойство макроскопического вещества из наших по­знаний в атомной физике. Со временем мы добьемся гораздо большего. Область науки, пробующая понять поведение боль­ших масс вещества на языке законов атомного поведения, назы­вается физикой твердого тела.

Перейти на страницу:

Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


5a. Электричество и магнетизм отзывы

Отзывы читателей о книге 5a. Электричество и магнетизм, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*