Брайан Грин - Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории)
120
Разумеется, ничто не гарантирует правомочность таких косвенных подходов. Например, некоторые лица несимметричны, а в физике могут быть законы, разные в далеко удаленных частях Вселенной (это вкратце обсуждается в главе 14).
121
Для знающего читателя должно быть ясно, что для справедливости этих утверждений потребуется так называемая N = 2 суперсимметрия.
122
Более точно, если обозначить константу связи О-гетеротической струны символом gОГ, а константу связи струны типа I символом gI, то соотношение между константами, для которых состояния в данных физических теориях эквивалентны, имеет вид gОГ = 1/gI или gI = 1/gОГ. Если одна из констант связи мала, то другая константа велика, и наоборот.
123
Это близкий аналог рассмотренной выше (R, 1/R) дуальности. Если обозначить константу связи струны типа IIB через gIIB, то кажется правдоподобной гипотеза, что значения констант gIIB и 1/gIIB приводят к одинаковым физическим результатам. Если gIIB велико, то 1/gIIB мало, и наоборот.
124
Если свернуты все измерения, кроме четырех, то в теории с двенадцатью измерениями и более обязательно возникнут безмассовые частицы со спином, большим 2, что неприемлемо ни с теоретической, ни с экспериментальной точек зрения.
125
Заметным исключением явилась важная работа 1987 г. Даффа, Поля Хоува, Такео Ииами и Келлога Стелле, в которой более ранние наблюдения Эрика Бергшоеффа, Эргина Сезгина и Таунсенда использовались для обоснования того, что десятимерная теория струн может иметь глубокую связь с 11-мерной теорией.
126
Более точно, эту диаграмму следует интерпретировать в том смысле, что у нас есть единственная теория, которая зависит от нескольких параметров. В число этих параметров входят константы связи, а также геометрические размеры и форма. В принципе теорию можно использовать для вычисления определенных значений всех этих параметров, но в настоящий момент неясно, как выполнить такие расчеты. Поэтому, чтобы лучше разобраться в этой теории, физики исследуют ее свойства при всевозможных значениях параметров. Если параметры выбираются в любой из шести полуостровных частей рис. 12.11, свойства теории будут наследоваться одной из пяти теорий струи или 11-мерной супергравитацией, как отмечено на рисунке. Если параметры выбираются в центральной части, физическими законами будет управлять все еще мистическая M-теория.
127
Следует отметить, однако, что даже в полуостровных областях существует ряд экзотических типов влияния бран на обычную физику. Например, высказывалось предположение, что три наших протяженных измерения могут сами быть крупной и несвернутой 3-браной. Если это предположение справедливо, то всю свою жизнь мы просто скользим по внутренности трехмерной мембраны. В настоящее время проводится анализ подобных гипотез.
128
Интервью с Эдвардом Виттеном, 11 мая 1998 г.
129
Знающему читателю будет понятно, что при преобразованиях зеркальной симметрии коллапсирующая трехмерная сфера одного пространства Калаби-Яу отображается на коллапсирующую двумерную сферу другого пространства Калаби-Яу, приводя, на первый взгляд, к той же ситуации флоп-перестроек, которая рассматривалась в главе 11. Разница, однако, в том, что в подобном зеркальном описании антисимметричное тензорное поле Bμν (действительная часть комплексной кэлеровой формы на зеркальном пространстве Калаби-Яу) обращается в нуль, и сингулярность гораздо сильнее, чем в случае, который описывался в главе 11.
130
Более точно, примерами экстремальных черных дыр являются черные дыры с минимальными для данных зарядов массами, в полной аналогии с рассмотренными в главе 12 БПС-состояниями. Такие черные дыры будут играть важнейшую роль при обсуждении энтропии черной дыры.
131
Излучение черной дыры должно быть подобно излучению теплоты раскаленным камином. Это как раз та проблема, которая обсуждалась в главе 4 и сыграла важнейшую роль в развитии квантовой механики.
132
Так как черные дыры, участвующие в конифолдных переходах с разрывом пространства, являются экстремальными, оказывается, что ни при каких малых массах они не излучают по Хокингу.
133
Лекция Стивена Хокинга, прочитанная на Амстердамском симпозиуме по гравитации, черным дырам и струнам, 21 июня 1996 г.
134
В первых расчетах Строминджера и Вафы обнаружилось, что математические выкладки становятся проще, если работать с пятью, а не четырьмя протяженными пространственно-временными измерениями. После завершения вычислений энтропии пятимерной черной дыры они с удивлением обнаружили, что еще никто не построил такие гипотетические экстремальные черные дыры в формализме пятимерной общей теории относительности. А так как результаты можно было проверить лишь сравнив ответ с площадью горизонта событий гипотетической черной дыры, Строминджер и Вафа занялись построением подобной пятимерной черной дыры. И им это удалось. Дальше уже не представляло труда показать, что результат для энтропии в теории струн, полученный на основе анализа микроскопических свойств, согласуется с предсказанием Хокинга, сделанным на основе площади поверхности горизонта событий черной дыры.
После публикации их работы многим теоретикам, среди которых необходимо отметить принстонского физика Кертиса Каллана и его последователей, удалось вычислить энтропию для более привычного случая четырех протяженных пространственно-временных измерений, и все эти вычисления подтвердили правильность предсказания Хокинга.
135
Интервью с Шелдоном Глэшоу, 29 декабря 1997 г.
136
Laplace, Philosophical Essay on Probabilities, trans. Andrew I. Dale. New York: Springer-Verlag, 1995. (См. рус. изд.: Лаплас. Опыт философской теории вероятности. М., 1908.)
137
Цитируется по книге: Stephen Hawking and Roger Penrose, The Nature of Space and Time. Princeton: Princeton University Press, 1995, p. 41. (Рус. пер.: Хокинг С, Пенроуз Р. Природа пространства и времени. Ижевск: РХД, 2000.)
138
Лекция Стивена Хокинга, прочитанная на Амстердамском симпозиуме по гравитации, черным дырам и струнам, 21 июня 1997 г.
139
Интервью с Эндрю Строминджером, 29 декабря 1997 г.
140
Интервью с Кумруном Вафой, 12 января 1998 г.
141
Лекция Стивена Хокинга, прочитанная на Амстердамском симпозиуме по гравитации, черным дырам и струнам, 21 июня 1997 г.
142
Это в определенной мере связано с вопросом о потере информации, который обсуждается в последние годы. Некоторые физики придерживаются идеи о возможности существования внутри черной дыры «ядра», где хранится вся информация, которую перенесли тела, попавшие под горизонт событий черной дыры.
143
В действительности, конифолдные переходы с разрывом пространства, рассмотренные в этой главе, затрагивают черные дыры. Поэтому может показаться, что анализ снова упирается в проблему сингулярностей черных дыр. Вспомним, однако, что конифолд возникает в тот момент, когда масса черной дыры становится нулевой, следовательно, данный вопрос не имеет прямого отношения к проблеме сингулярностей черных дыр.
144
Более точно, в данном температурном диапазоне Вселенная должна быть заполнена фотонами в соответствии с законами излучения идеально поглощающего тела (абсолютно черного тела на языке термодинамики). Тот же спектр излучения на квантово-механическом уровне имеют, согласно Хокингу, черные дыры, или, согласно Планку, раскаленный камин.
145
В обсуждении правильно передан смысл общей идеи, но опущены некоторые тонкие моменты, относящиеся к распространению света в расширяющейся Вселенной. Учет этих моментов влияет на конкретные численные значения. В частности, хотя в специальной теории утверждается, что никакие объекты не могут двигаться быстрее света, из нее не следует, что два фотона, движущихся по расширяющемуся пространству, должны удаляться друг от друга со скоростью, не превышающей скорость света. Например, в период «просветления» Вселенной (примерно через 300 000 лет после Большого взрыва) две области, разделенные расстоянием около 900 000 световых лет, могли ранее участвовать в энергетическом обмене, хотя это расстояние превышает 300 000 световых лет. Увеличение допустимого расстояния втрое объясняется расширением структуры пространства. Оно означает, что при обратной перемотке пленки к моменту 300 000 лет после Большого взрыва минимальное расстояние, при котором будет возможен теплообмен, равно 900 000 световых лет. Конкретные значения не влияют на правильность качественного анализа ситуации.