Брайан Грин - Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории)
105
Для читателя, сведущего в математике, отметим, что число семейств колебательных мод струны равно половине абсолютного значения эйлеровой характеристики многообразия Калаби-Яу, как указано в примечании [92] к главе 9. Эта величина равна абсолютному значению разности h2,1 и h1,1, где hp,q обозначает число Ходжа (p,q). С точностью до константы эти значения равны числу нетривиальных гомологии 3-циклов (трехмерных отверстий) и числу гомологии 2-циклов (двумерных отверстий). Таким образом, хотя в основном содержании говорится о полном числе отверстий, более точный анализ показывает, что число семейств зависит от абсолютного значения разности между числами четномерных и нечетномерных отверстий. Выводы, однако, те же самые. Например, если два пространства Калаби-Яу отличаются перестановкой соответствующих чисел Ходжа h2,1 и h1,1, то число семейств частиц — полное число отверстий — не изменится.
106
Название объясняется тем, что «ромбы Ходжа», математические выражения чисел отверстий различных размерностей для пространств Калаби-Яу, являются зеркальными отражениями друг друга для каждой зеркальной пары.
107
Термин зеркальная симметрия используется в физике и в других контекстах, совершенно не связанных с данным, например, в связи с понятием киральности, т.е. в связи с вопросом о том, является ли Вселенная инвариантной относительно замены правого на левое (см. примечание [73] к главе 8).
108
Для читателя, склонного к математической строгости рассуждений, будет понятно, что вопрос состоит в том, является ли топология пространства динамической, т.е. может ли она меняться во времени. Отметим, что хотя представление о динамических изменениях топологии часто используется в этой книге, на практике обычно рассматривается однопараметрическое семейство пространственно-временных многообразий, чья топология меняется при изменении параметра семейства. Формально этот параметр не является временем, но в определенном контексте может с ним отождествляться.
109
В русскоязычной литературе более распространенным является термин «кротовые норы». — Прим. ред.
110
Для математически подкованного читателя отметим, что процедура включает сдутие рациональных кривых на многообразии Калаби-Яу. Далее используется тот факт, что при определенных условиях образовавшаяся сингулярность может быть устранена серией последовательных раздутий.
111
В оригинале flop-transition. Некоторые термины, используемые автором в этой и следующих главах, не являются общепринятыми (и/или еще не имеют русского эквивалента): мы подошли к обсуждению вопросов, касающихся последних достижений в физике и математике. — Прим. перев.
112
К.С. Cole, New York Times Magazine, October 18, 1987, p. 20.
113
Цитируется по книге: John D. Barrow, Theories of Everything. New York: Fawcett-Columbine, 1992, p. 13. (В рус. пер. цитата есть в книге: Кузнецов Б.Г. Эйнштейн: Жизнь. Смерть. Бессмертие. М: Наука, 1980, с. 363.)
114
Кратко поясним различия между пятью теориями струн. Для этого отметим, что колебательные возбуждения вдоль струнной петли могут распространяться по часовой стрелке и против нее. Теории струн типов IIA и IIB отличаются тем, что в последней теории колебания в обоих направлениях идентичны, а в первой теории противоположны по форме. Противоположность в данном контексте имеет точный математический смысл, но нагляднее всего ее можно представлять в терминах вращений колебательных мод в каждой теории. В теории типа IIB оказывается, что все частицы вращаются в одном направлении (у них одна и та же киральность), а в теории типа IIA — в разных направлениях (у них разная киральность). Тем не менее, в каждой теории реализуется суперсимметрия. Две гетеротические теории имеют аналогичные, но более эффектные отличия. Все моды колебаний по часовой стрелке выглядят так же, как и моды струн типа II (если рассматривать только колебания по часовой стрелке, то теории струн типов IIA и IIB идентичны), но колебания против часовой стрелки совпадают с колебаниями исходной теории бозонных струн. Хотя в бозонных струнах возникают неразрешимые проблемы, если рассматривать их колебания в обоих направлениях, в 1985 г. Дэвид Росс, Джеффри Харви, Эмиль Мартинек и Райан Ром (все они в то время работали в Принстонском университете и их прозвали «Принстонский струнный квартет») показали, что при использовании этих струн в комбинации со струнами типа II получается вполне согласованная теория. Однако в этом союзе была странная особенность, известная со времен работ Клода Лавлейса из университета Ратчерса 1971 г. и Ричарда Броуэра из Бостонского университета, Питера Годдарда из Кембриджского университета и Чарльза Торна из Гейнсвилльского университета (штат Флорида) 1972 г. А именно, для бозонной струны требовалось 26 пространственно-временных измерений, а для суперструны, как обсуждалось, требовалось 10. Так что гетеротические струны (от греческого ετερος, т.е. разный) являются странными гибридами, в которых колебательные моды против часовой стрелки живут в 26 измерениях, а колебательные моды по часовой стрелке — в 10! Пока читатель окончательно не запутался, пытаясь понять этот странный союз, сообщим ему о работе Гросса и его коллег, в которой было показано, что 16 лишних бозонных измерений должны скручиваться в одно из двух торообразных многообразий очень специального вида, приводя к теориям О- и Е-гетеротических струн. Так как 16 добавочных бозонных измерений компактифицированы, каждая из этих теорий ведет себя так, как если бы в ней было 10 измерений, т.е. как теории струн типа II. В гетеротических теориях также реализован свой вариант суперсимметрии. И, наконец, теория типа I аналогична теории IIB, за исключением того, что помимо замкнутых струн, рассмотренных в предыдущих главах, в ней имеются струны со свободными концами, называемые открытыми струнами.
115
Понятие «точный» в смысле данной главы (например, «точное» уравнение движения Земли) в действительности относится к точному предсказанию некоторой физической величины в рамках выбранного теоретического формализма. До тех пор, пока у нас не будет истинной окончательной теории (возможно, она уже есть, а возможно, ее вообще не будет) все наши теории сами являются приближениями реальности. Но это понятие приближения не имеет никакого отношения к приближениям, рассматриваемым в данной главе. Здесь нас интересует тот факт, что в рамках выбранной теории часто сложно или невозможно сделать точные предсказания. Вместо этого приходится искать эти предсказания с помощью приближенных методов в рамках теории возмущений.
116
Читателям, пропустившим раздел «Более точный ответ» в главе 6, рекомендуется пролистать его начало.
117
Эти диаграммы являются струйными вариантами так называемых диаграмм Фейнмана, предложенных Ричардом Фейнманом для вычислений по теории возмущений в квантовой теории поля точечных частиц.
118
Точнее, каждая пара виртуальных струн, т.е. каждая петля конкретной диаграммы, приводит (наряду с другими более сложными слагаемыми) к мультипликативному вкладу, пропорциональному константе связи струны. Чем больше петель, тем выше показатель степени константы связи струны в ответе. Если константа связи струны меньше 1, повторные умножения сделают вклад следующих петель меньше, в противном случае эти вклады будут того же порядка или будут растут с числом петель.
119
Для читателя, осведомленного в математике, отметим, что в силу этого уравнения пространство-время должно иметь Риччи-плоскую метрику. Если разбить пространство-время на прямое произведение четырехмерного пространства Минковского и шестимерного компактного кэлерова многообразия, то обращение в нуль кривизны Риччи будет эквивалентно требованию того, что кэлерово многообразие должно быть многообразием Калаби-Яу. Вот почему многообразия Калаби-Яу так важны в теории струн.
120
Разумеется, ничто не гарантирует правомочность таких косвенных подходов. Например, некоторые лица несимметричны, а в физике могут быть законы, разные в далеко удаленных частях Вселенной (это вкратце обсуждается в главе 14).
121
Для знающего читателя должно быть ясно, что для справедливости этих утверждений потребуется так называемая N = 2 суперсимметрия.