Kniga-Online.club
» » » » Евгений Кунин - Логика случая. О природе и происхождении биологической эволюции

Евгений Кунин - Логика случая. О природе и происхождении биологической эволюции

Читать бесплатно Евгений Кунин - Логика случая. О природе и происхождении биологической эволюции. Жанр: Биология издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Рис. 9–4. Типичные частоты ошибок на различных стадиях передачи биологической информации.

Эксперименты с точными, но медленными рибосомными мутантами позволяют предположить, что компромисс между скоростью и точностью трансляции связан с механическими ограничениями трансляционной системы и с трудом может быть преодолен мутациями в ее компонентах. В результате для ограничения ошибок трансляции и их пагубных последствий эволюция, похоже, выбрала другие способы адаптаций.

Твердо установлено, что «высокостатусные» гены (те, что интенсивно экспрессируются и медленно эволюционируют) обладают более выраженным предпочтением триплетов по сравнению с «низкостатусными» генами. Оптимальные триплеты, которыми насыщены гены с высоким статусом, обеспечивают более низкую частоту ошибок, равно как и более высокую скорость трансляции, и, таким образом, частично избегают вышеупомянутого компромисса (Drummond and Wilke, 2009, 2008). Асимметрия триплетов между высокостатусными и низкостатусными генами может объясняться ценой селекции; в силу этого заметный отбор оптимальных кодонов может идти только в генах высокого статуса.

Основным вредным эффектом ошибок трансляции считается неправильная укладка белка (Drummond and Wilke, 2009, 2008), хотя ошибки включения аминокислот в каталитических сайтах, безусловно, могут стать дополнительным фактором. Как уже говорилось в главе 4, отбор на устойчивость к неправильной укладке является одним из главных аспектов эволюции белков – возможно, даже ее основной движущей силой. Менее ясно, какой источник неверной укладки наиболее важен – изначально неправильная последовательность или ошибки при ее трансляции. В любом случае, хотя укладка белка обычно не рассматривается в качестве процесса передачи информации, в действительности она им является. В самом деле, укладка предполагает поток информации, идущий от одномерной аминокислотной последовательности к трехмерной структуре белка.

Ровно то же самое относится к структурным РНК. Частоту неправильной укладки трудно определить экспериментально, и этого не было сделано для большого числа белков или РНК. Если тенденция, отражающая процент ошибок и показанная на рис. 9–4, – чем дальше от генома, тем менее точен этап передачи информации, – служит каким-либо индикатором, частота ошибок укладки должна быть даже выше частоты ошибок трансляции.

Такое предсказание также следует из здравого смысла, учитывая невероятную сложность процесса укладки и огромное количество ошибочных вариантов, доступных в принципе для укладываемого белка или РНК-молекулы (Bowman et al., 2011; Pande et al., 1998). Имея в виду высокую сложность пространства укладок, эпохальное открытие (сделанное первоначально Кристианом Анфинсеном и впоследствии подтвержденное многочисленными экспериментами), что белки способны самопроизвольно складываться в нативную конформацию, вызвало огромное удивление (Anfinsen, 1973).

Спустя почти 50 лет после открытия Анфинсена все еще остается предметом споров, глобальный или локальный минимум свободной энергии ищут спонтанно укладывающиеся белки. Но стало ясно, что лишь небольшие белки укладываются спонтанно; большинство белков нуждаются в специальных молекулярных устройствах, других белках, известных как шапероны, чтобы сформировать правильную структуру. Шапероны функционируют удивительным образом: их молекулы образуют «ячейку» (известную также как ячейка Анфинсена), которая изолирует укладываемый белок от цитоплазмы и частично разворачивает его, облегчая тем самым поиск нативной конформации (Ellis, 2003). Большинство шаперонов – синтезируемые в больших количествах, высококонсервативные, высокостатусные белки.

Первоначально некоторые из шаперонов были открыты как «белки теплового шока», то есть белки, которые резко усиливают свою активность при повышенной температуре (и, как было показано позже, при других стрессовых условиях) и противодействуют неправильной укладке других белков, которая усугубляется при стрессе (Vabulas et al., 2010). Хотя это явление менее детально исследовано, белковые шапероны также способствуют укладке молекул РНК (Russell, 2008; Woodson, 2010). В целом контроль над укладкой белков (и, вероятно, РНК) является, без сомнения, одной из основных функций во всех клетках.

Помимо устройств, подобных шаперонам, все клетки задействуют арсенал разнообразных молекулярных машин для контроля управляемого расщепления белков, в частности неправильно уложенных, и РНК. Как и молекулярные шапероны, эти машины – протеасомы, в случае белков, и экзосомы (деградосомы у бактерий) в случае РНК – повсеместно распространены во всех трех доменах жизни, присутствуют в изобилии в большинстве клеток и подвержены регулированию в условиях стресса (Hartung and Hopfner, 2009; Volker and Lupas, 2002; см. также гл. 7). Кроме того, эти машины, наряду с дополнительными вспомогательными системами регулируемого протеолиза, являются основными внутриклеточными потребителями энергии (АТФ). Бактерии дополнительно обладают высококонсервативными системами так называемой транс-трансляции, которые освобождают забуксовавшие рибосомы из аберрантных мРНК, на которых трансляция не в состоянии прекратиться должным образом, и предназначают такие мРНК и их белковые продукты (также аберрантные) к разрушению (Keiler, 2008).

Как мы подробно обсуждали в главе 7, эукариоты обладают важной стадией обработки информации, которая фактически не имеет эквивалента у прокариот: сплайсинг первичных транскриптов. Сопутствующая система контроля качества, по-видимому, эволюционировала одновременно с возникновением эукариот (см. гл. 7): механизм нонсенс-опосредованного распада (НОР), распознающий и уничтожающий аберрантные мРНК, которые содержат стопкодоны внутри экзонов помимо последнего, 3’-концевого экзона кодирующей последовательности (Behm-Ansmant et al., 2007; Stalder and Muhlemann, 2008).

Итак, контроль частоты ошибок и их влияния на биологические процессы передачи информации представляется одним из ключевых аспектов эволюции. По причинам, которые мы понимаем лишь частично (в лучшем случае), процент ошибок, по-видимому, не падает сильно ниже максимально допустимого значения: порога мутационного вырождения и соответствующего катастрофического порога фенотипических мутаций, который не изучен подробно, но предположительно существует. В случае частоты мутаций, простая неадаптивная теория популяционной генетики вполне способна объяснить наблюдаемые значения с достаточной степенью надежности (Lynch, 2010). Аналогичная аргументация была применена к фенотипическим мутациям (Burger et al., 2006), но в этом случае решение представляется менее очевидным.

Существует противоречие между относительно высокой частотой ошибок транскрипции, трансляции, сплайсинга, а также, весьма вероятно, укладки и исключительной сложностью устройств предотвращения повреждений, таких как протеасомы, экзосомы, системы НОР и др. Эволюция этих многоуровневых систем контроля предполагает, что вредное воздействие фенотипических мутаций при той частоте, что наблюдается при воспроизводстве клеток, довольно значительно, однако издержки отбора на повышение точности процессов были бы непосильными, и, соответственно, неоднократно выбирались альтернативные пути эволюции систем предотвращения повреждений.

В целом, по-видимому, борьба с энтропией является одним из важнейших аспектов эволюции. Отбор на уменьшение и контроль энтропии носит универсальный характер и последовательно распространяется по этапам передачи информации, от репликации до укладки и сортировки белков и РНК. Антиэнтропийная эволюция частично ведет к снижению самой частоты мутаций/ошибок, а частично действует на уровне контроля повреждений. Эволюционные эксперименты показывают, что отбор на повышение частоты мутаций действительно происходит. Тем не менее остается неясным, широко ли распространен такой отбор на повышение шума и достаточен ли уровень шума, который антиэнтропийные механизмы не способны устранить, чтобы обеспечить изменчивость, необходимую для эволюции. Мы обсудим эту ключевую проблему в следующих разделах.

Шум в биологических системах и его созидательная роль в эволюции

Никакой информационный канал не может быть свободным от шумов (см. гл. 4 и 8, и предыдущий раздел). Этот фундаментальный, обусловленный законами термодинамики аспект передачи информации делает эволюцию возможной благодаря достаточно высокой частоте ошибок репликации, даже в отсутствие отбора на повышение изменчивости (см. гл. 2). Как отмечалось в гл. 4, практически нейтральные мутации, накапливающиеся по чисто энтропийным причинам, образуют почти нейтральные сети, которые служат резервуарами эволюции, в том числе положительного отбора, особенно в изменяющихся условиях. Подчеркнем еще раз, что не только фиксирующиеся мутации, но и полиморфизмы, которые особенно многочисленны в больших популяциях, вносят вклад в важные для эволюции нейтральные сети. Кроме того, мы неоднократно видели, что увеличение частоты мутаций может быть полезно – и поддерживается отбором, как это имеет место в случае стресс-индуцированного мутагенеза и аллелей-мутаторов.

Перейти на страницу:

Евгений Кунин читать все книги автора по порядку

Евгений Кунин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Логика случая. О природе и происхождении биологической эволюции отзывы

Отзывы читателей о книге Логика случая. О природе и происхождении биологической эволюции, автор: Евгений Кунин. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*