Евгений Кунин - Логика случая. О природе и происхождении биологической эволюции
Стресс-индуцированный мутагенез – в частности, механизм мутагенного восстановления в кишечной палочке, известный как SOS-репарация, – был открыт задолго до опытов Кэрнса. Более того, Мирослав Радман (Radman, 1975) и Харрисон Эколс (Echols, 1981) независимо друг от друга пришли к плодотворной мысли, что эта мутагенная форма репарации может быть адаптивным механизмом антистрессовой реакции, а не просто сбоем в работе восстановительных систем. Два десятилетия дальнейших исследований подтвердили эту замечательную идею, сомневаться в истинности которой уже нет разумных оснований. Несколько групп убедительных исследований подтверждают адаптивный характер неточной репарации ДНК (Foster, 2007; Galhardo et al., 2007; Rosenberg, 2001).
Активность SOS-каскада и других мутагенных механизмов репарации в бактериях тщательно регулируется, в частности, переключением с точного воспроизведения к подверженному ошибкам восстановлению разрывов двойной спирали под воздействием сигма-фактора РНК-полимеразы, RpoS, с тем чтобы, по-видимому, достичь оптимальной скорости мутаций. Важнее всего, что стресс-индуцированные мутации, возникающие вследствие склонных к ошибкам процессов репарации, хотя и не нацелены на конкретные гены, в то же время не разбросаны по геному беспорядочно. Напротив, эти мутации концентрируются вокруг двухцепочечных разрывов ДНК, которые вызваны различными стресс-факторами и привлекают к себе аппарат мутагенной репарации.
Мутагенная репарация могла возникнуть как специфический адаптивный механизм, который делает возможной координированную эволюцию групп функционально связанных генов (ключевая особенность геномной архитектуры у прокариот) в тех редких клетках, где происходят полезные мутации, одновременно ограничивая ущерб для других частей генома. Стресс-индуцированный мутагенез, в особенности активация ретротранспозонов, был продемонстрирован также у дрожжей и животных, и это дает основание предполагать, что такой путь адаптивной эволюции универсален для клеточных форм жизни.
По крайней мере среди бактерий стресс-индуцированный мутагенез – не редкий или экзотический, а крайне распространенный процесс. Среди сотен изученных природных штаммов E. Coli индуцированный мутагенез характерен для более 80 процентов стареющих колоний, и превышение числа мутаций, запускаемых стрессом, над конститутивными мутациями варьирует на несколько порядков (Bjedov et al., 2003).
Примечательно, что стресс-индуцированная и, по всей видимости, адаптивная нестабильность генома лежит также в основе рака. Хорошо известно, что опухоли развиваются (эволюционируют) в условиях постоянного кислородного стресса, который вызывает обширные перестройки генома и мутации. Главным образом благодаря этим стресс-индуцированным изменениям выживают мутанты, способные к неконтролируемому росту в условиях стресса. Несмотря на различия в конкретных механизмах мутагенной репарации и ее регулирования, злокачественные опухоли животных (включая человека) в принципе не так уж отличаются от бактериальной популяции, эволюционирующей в стрессовых условиях.
Адаптивная эволюция, происходящая в результате стресс-индуцированного мутагенеза, не является строго ламарковской, потому что стресс не вызывает мутации непосредственно и исключительно в генах, отвечающих за устойчивость к данному стрессу. Вместо этого в организмах развились механизмы, которые в ответ на стресс вызывают неспецифический мутагенез. Однако этот процесс, как оказывается, тонко настроен таким образом, чтобы минимизировать ущерб от вредных мутаций в тех редких геномах, которые содержат полезную мутацию. Механизмы этого типа лучше всего определить как квазиламарковские. Действительно, в случае стресс-индуцированного мутагенеза необходимо учитывать следующее:
1. Условия окружающей среды приводят к появлению мутаций.
2. В результате индуцированных мутаций возникает адаптация к факторам стресса, запустившим мутагенез.
3. Мутагенная репарация управляется сложными механизмами регуляции, что не оставляет никаких сомнений относительно адаптивного характера этого процесса.
Существует прямая связь между ламарковским аспектом стрессиндуцированного мутагенеза и горизонтальным переносом, проявляющаяся в явлении переноса детерминант резистентности, индуцируемого антибиотиками. Многие антибиотики вызывают SOS-ответ, что, в свою очередь, приводит к мобилизации интегративных конъюгационных элементов, которые служат переносчиками генов устойчивости к антибиотикам (Barriss et al., 2009). Аналогия с АПГ очевидна и абсолютно уместна. Здесь мы наблюдаем конвергенцию различных механизмов изменения генома в ламарковской модальности эволюции.
Континуум дарвиновских и ламарковских механизмов эволюции
В предыдущих разделах мы обсудили значительное разнообразие явлений. Некоторые из них, по-видимому, строго соответствуют критериям Ламарка, тогда как другие можно квалифицировать как квазиламарковские (см. табл. 9–1). Принципиальное различие между дарвиновским и ламарковским механизмами эволюции состоит в том, что первый опирается на случайную, ненаправленную изменчивость, второй же основан на вариациях, непосредственно обусловленных внешними стимулами и влекущих за собой специфический ответ на этот стимул (см. рис. 9–1). Ни Ламарк, ни Дарвин не знали ничего о механизмах возникновения и закрепления наследственных изменений, так что им было относительно легко допустить мысль, что фенотипические модификации напрямую транслируются в наследственные (или, как сказали бы в наше время, генетические или геномные) изменения. Тем не менее жесткий ламарковский сценарий крайне требователен, поскольку подразумевает, что должен существовать молекулярный механизм для точного перевода фенотипического изменения в соответствующую модификацию генома (мутацию). По всей видимости, фундаментального механизма для такой обратной геномной инженерии не существует, и не лишено смысла предположение, что подобные механизмы находятся под жестким контролем отбора, направленного против дестабилизации генома. Более того, передача информации от белков к нуклеиновым кислотам была бы крайне затруднительна физико-химически – эта трудность, по всей видимости, отражает разграничение между матричными и каталитическими биомолекулами, возникшее на ранних этапах эволюции жизни (см. гл. 12). Центральная догма молекулярной биологии (Crick, 1970), согласно которой поток информации от белков к нуклеиновым кислотам отсутствует, является частичным воплощением этого разделения. Однако в принципе обратный поток некоторых типов информации от фенотипа – или от окружающей среды, рассматриваемой как расширенный фенотип, – в геном не является невозможным, учитывая широкое распространение обратной транскрипции и ДНК-транспозиции. Для работы истинно ламарковского сценария требуются чрезвычайно изощренные механизмы; в двух примечательных случаях, систем CRISPR-Cas и piРНК (описанных ранее в этой главе), такие механизмы были обнаружены.
Существование других полноценных ламарковских систем вполне представимо и даже вероятно, что предполагает, в частности, открытие вирус-специфических последовательностей, которые потенциально несут устойчивость к генетически родственным вирусам в растительных и животных геномах (см. гл. 10). Тем не менее эти механизмы вряд ли представляют собой доминирующую тенденцию в геномной эволюции, возможно, в силу вышеупомянутой селекции против чрезмерной нестабильности генома. Механизмы, обозначенные в предыдущих разделах как квазиламарковские, напротив, повсеместны. По существу, они оказываются не менее поразительными – и не менее сложными, – чем оригинальный ламарковский сценарий: квазиламарковские процессы переводят случайные мутации в конкретные адаптивные реакции в ответ на стимулы внешней среды.
Тема мощных, часто неблагоприятных воздействий окружающей среды на организмы представляется общим мотивом для различных аспектов (квази)ламарковского режима эволюции, описанных в данной главе: для системы CRISPR-Cas, стресс-индуцированного мутагенеза и других явлений (см. табл. 9–1). Эта связь, скорее всего, не иллюзорна: кажется вполне логичным, что сильные (чрезвычайные) сигналы из окружающей среды инициируют (квази)ламарковские процессы, в то время как относительно слабые («обычное дело») сигналы транслируются в дарвиновскую модальность эволюции (см. рис. 9–3).
Обсуждая эволюционное значение горизонтального переноса генов, Энтони Пул предположил, что ламарковская составляющая горизонтального переноса становится иллюзорной, если посмотреть на эволюцию с «точки зрения гена» (Poole, 2009). Действительно, ламарковская модальность связана в первую очередь с организменным уровнем сложности и не распространяется на самый фундаментальный уровень эволюции, включающий гены, независимо эволюционирующие части гена (те, что кодируют различные белковые домены), а также мобильные элементы (см. гл. 6). Таким образом, ламарковская эволюция выступает в качестве «эмергентного феномена». Это, пожалуй, неудивительно, учитывая сложность механизмов, необходимых для интеграции нового генетического материала в геном при реализации ламарковской схемы.