Kniga-Online.club
» » » » Александр Марков - Эволюция. Классические идеи в свете новых открытий

Александр Марков - Эволюция. Классические идеи в свете новых открытий

Читать бесплатно Александр Марков - Эволюция. Классические идеи в свете новых открытий. Жанр: Биология издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Исследователи размножили исходный рибозим и создали две одинаковые подопытные популяции (A и B). Эти популяции жили и размножались в течение десяти поколений. В каждом поколении проводился отбор на способность разрезать субстрат (короткую молекулу РНК). Те рибозимы, которым это удалось, отбирались и размножались при помощи мутагенных (склонных к ошибкам) полимераз. Скорость мутирования составляла в среднем одну мутацию на «особь» за поколение[57]. Чтобы следить за ходом эволюции, секвенировали по 2–3 тыс. «особей» (молекул рибозима) из каждого поколения.

Ученые ожидали, что за десять поколений такой жизни накопится значительный запас скрытой изменчивости. Рибозимы будут мутировать, вредные мутации отсеются отбором, а нейтральные будут копиться. Исходный рибозим Azo справляется со своей функцией в широком спектре условий (например, он выдерживает нагревание до 80 °C). Это говорит о высокой «помехоустойчивости» рибозима и позволяет надеяться, что к мутациям он окажется так же толерантен, как и к скачкам температуры[58].

Надежды оправдались: обе популяции за десять поколений накопили изрядное количество мутаций. Исходных, немутантных молекул «дикого типа» почти не осталось. Большинство особей отличались от исходного рибозима 3–6 мутациями.

Приспособленность популяций A и B (т. е. их усредненная каталитическая активность) за десять поколений не изменилась. Они не стали справляться со своей функцией лучше, чем исходный рибозим Azo. По-видимому, Azo уже был максимально оптимизирован для выполнения этой функции, и за десять поколений эволюционирующим популяциям так и не удалось «найти» такую мутацию, которая бы сделала разрезание субстрата еще более эффективным. Ни одна из возникших мутаций не оказалась полезной и не была поддержана положительным отбором. Таким образом, в течение десяти поколений действовал только очищающий отбор, который отбраковывал вредные мутации, а нейтральные игнорировал, пассивно позволяя им накапливаться.

Теперь можно было проверить главное: поможет ли скрытая изменчивость приспособиться к новым условиям. «Новые условия» состояли в том, что исследователи заменили субстрат. Вместо стандартного олигонуклеотида они предложили рибозимам его производное, в котором один из атомов кислорода в остатке фосфорной кислоты (расположенном как раз в том месте, где рибозим должен разрезать цепочку РНК) был заменен на атом серы. «Дикий» рибозим Azo справляется с таким субстратом, но с большим трудом (с низкой эффективностью).

После смены субстрата эксперимент продолжался еще восемь поколений, но теперь в нем участвовали уже не две, а три популяции. К линиям A и B добавилась третья, контрольная линия, состоящая из рибозимов «дикого типа» (WT) и не имеющая запаса скрытой изменчивости.

Все три популяции за восемь поколений в той или иной степени приспособились к новому субстрату, т. е. стали разрезать его эффективнее, чем вначале. Однако популяции A и B приспосабливались быстрее и достигли в итоге большей эффективности, чем линия WT (см. рисунок).

Секвенируя рибозимы последнего поколения, авторы обнаружили, что в популяции A наибольшей численности достиг рибозим-мутант с семью мутациями, получивший название AzoΔ. В популяции B победителем эволюционного соревнования оказался другой мутант — Azo*, у которого обнаружилось четыре мутации. Все мутации у двух «чемпионов» оказались разными.

Рибозим Azo*, как показали дальнейшие эксперименты, действительно разрезает новый субстрат с высокой эффективностью. Что же касается рибозима AzoΔ, то в чистом виде он, к удивлению ученых, вообще не смог справиться с новым субстратом. Он оказался своеобразным рибозимом-«прихлебателем»: он прекрасно режет новый субстрат только в присутствии других рибозимов (например, исходного или Azo*). Вероятно, другие рибозимы помогают ему свернуться в правильную трехмерную конфигурацию. Подобные ситуации ранее уже были замечены в экспериментах с рибозимами[59].

Что касается линии WT, то в ней за восемь поколений так и не появились эффективные мутанты, сравнимые с Azo* или AzoΔ.

Приспособление популяций A (серые кружки), B (светло-серые) и WT (черные) к новому субстрату. По горизонтальной оси — поколения, по вертикальной — приспособленность, измеряемая долей рибозимов, которым удалось разрезать субстрат. По рисунку из Hayden et al., 2011.

Авторы выяснили, каким образом скрытая изменчивость помогла популяции B произвести удачливого мутанта Azo*. Оказалось, что после десяти поколений очищающего отбора в популяции уже были рибозимы с одной, двумя и даже тремя мутациями из четырех, составляющих генотип Azo*. Эти мутации по отдельности не дают преимущества ни в старых, ни в новых условиях. Для эффективного разрезания нового субстрата нужны все четыре мутации вместе. Понятно, что наличие у некоторых рибозимов в популяции B отдельных мутаций из этого комплекса резко повысило вероятность возникновения удачного генотипа Azo*. Пользуясь терминологией Ленски, можно сказать, что на стадии накопления нейтральных мутаций произошло «потенцирование» рибозимов популяции B, повысившее вероятность последующей «актуализации», т. е. закрепления ключевой мутации, создавшей новый признак.

Исследование показало полезность скрытой изменчивости для адаптации к новым условиям. Но, чтобы скрытая изменчивость могла накопиться, организмы должны быть помехоустойчивыми. Если бы исходный рибозим не обладал этим свойством, почти все мутации были бы для него в нормальных условиях вредными. Очищающий отбор безжалостно бы их отсеивал, и при смене условий в популяции не оказалось бы особей, преадаптированных к новому субстрату.

Удивительная диалектика: пытаясь сделать организмы более устойчивыми (стабильными, неизменными), отбор в итоге повышает их эволюционную пластичность, облегчая последующие эволюционные изменения.

Эволюция в монокультуре не похожа на эволюцию в сообществе

Мы рассмотрели лишь малую часть эволюционных экспериментов, проведенных биологами в последние годы. Экспериментальное изучение эволюции сегодня продвигается семимильными шагами. В этой молодой области то, что уже сделано, — сущий пустяк по сравнению с тем, что еще предстоит сделать.

В большинстве экспериментов изучалась эволюция либо искусственных молекулярных систем, либо изолированных видов (таких опытов поставлено больше всего), либо пары взаимосвязанных видов (например, паразита и хозяина). Между тем прекрасно известно, что межвидовые взаимоотношения, коэволюция, приспособление видов друг к другу играют в развитии живейшую роль. Трудно придумать пример «чисто абиотического» фактора, на который не влияли бы (прямо или косвенно) живые организмы[60].

Присутствие других видов может повлиять на судьбу эволюционирующей популяции множеством способов. Например, из-за наличия конкурентов популяции может достаться меньше ресурсов, в результате ее численность будет ниже, поэтому придется дольше ждать появления редких полезных мутаций, усилится генетический дрейф и в целом адаптация будет идти медленнее. Или на первый план может выйти не индивидуальный, а межвидовой отбор: виды, лучше адаптированные к среде, просто-напросто вытеснят конкурентов, причем серьезные изменения в генофондах могут даже не успеть произойти. Или популяции будут искать компромисс между приспособлением к абиотическим факторам и друг к другу: в этом случае монокультуры, которым не нужно идти на такие компромиссы, должны лучше приспособиться к неживой среде, чем члены сообщества. Наконец, популяции могут научиться извлекать пользу из присутствия других видов и даже наладить с ними взаимовыгодное сотрудничество, что должно пойти на пользу сообществу как целому.

В 2012 году биологи из Имперского колледжа Лондона предприняли одну из первых попыток сравнить эволюцию микробов в монокультурах и смешанном сообществе (Lawrence et al., 2012). Авторы работали с пятью видами бактерий, совместно встречающихся в лужах у корней буков и в дуплах. Эти бактерии на искусственной среде образуют колонии разного цвета и формы. Судя по нуклеотидным последовательностям гена 16S-рРНК (этот ген чаще всего используют для классификации бактерий), подопытные микробы относятся к пяти разным семействам, хотя их видовую принадлежность авторы не установили и просто обозначили буквами: A, B, C, D и E[61]. Все пять видов — аэробные гетеротрофы, т. е. потребители готовой органики, разлагающие ее с использованием кислорода.

Перейти на страницу:

Александр Марков читать все книги автора по порядку

Александр Марков - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Эволюция. Классические идеи в свете новых открытий отзывы

Отзывы читателей о книге Эволюция. Классические идеи в свете новых открытий, автор: Александр Марков. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*