Kniga-Online.club
» » » » Марк Мосевицкий - Распространненость жизни и уникальность разума?

Марк Мосевицкий - Распространненость жизни и уникальность разума?

Читать бесплатно Марк Мосевицкий - Распространненость жизни и уникальность разума?. Жанр: Биология издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Значительное количество эукариотических генов не имеет аналогов ни у бактерий, ни у архе. Хартман и Федоров (Hartman and Fedorov, 2002) выявили в эукариотических организмах (дрожжах, дрозофиле и др.) более 300 белков, не имеющих “родственников” у известных прокариот. Основываясь на этом факте, авторы предположили участие в формировании эукариотической клетки еще и третьего участника, также прокариота, принадлежавшего линии, названной ими хроноцитами. Эта линия сама не сохранилась и оставила след только в сформированных с ее участием эукариотах. Имея в виду функции белков, отсутствовавших у бактерий и у архе, Хартман и Федоров предполагают, что главной особенностью хроноцитов было присутствие цитоскелета и других структурных элементов цитоплазмы (шероховатый ретикулум, тельца Гольджи), которые отличают цитоплазму всех эукариот от почти неструктурированной цитоплазмы известных прокариот. Как полагают эти авторы, ядра сформировались в результате эндосимбиотического взаимодействия бактерии и архе в хроноците. Последний, уже обладавший актиновым и тубулиновым цитоскелетом, предоставил генетическую информацию, составившую базу для формирования сложно организованной цитоплазмы эукариотической клетки.

Однако было ли действительно необходимым привнесение в композит гипотетическим хроноцитом определенных признаков, которые отсутствовали у двух очевидных симбионтов – бактерий и архе? В принципе, такой необходимости не было, так как значительное количество новых признаков (генов) сформировалось в процессе эволюционного развития эукариота, т. е. уже после образования композита. В первую очередь это относится к самому ядру. О необходимости формирования у эукариот новых механизмов (а следовательно, и генов) в связи с организацией сплайсинга говорилось выше. Вообще, клеточное ядро – весьма сложное образование. Помимо двуслойной ядерной оболочки, пронизанной регулярно распределенными белковыми структурами, образующими ядерные поры, клеточное ядро имеет сложное внутреннее строение. Его фибриллярный скелет (ядерный матрикс) образован, главным образом, ядерными белками ламинами. Детали структуры ядерного матрикса на протяжении многих лет являются предметом обсуждения (см. Георгиев и Ченцов, 1960; Berezney and Coffey, 1977; Gerace and Blobel, 1982; Мосевицкий и Новицкая, 1982; Мосевицкий, 1985; van Eekelen et al., 2002). Ядерный матрикс участвует в организации и функционировании заключенных в ядре хромосом. На нем базируются ферментные комплексы, осуществляющие пооперонную репликацию ДНК (Tubo and Berezney 1987), транскрипцию (Razin et al., 1985; Jackson, 2005), сплайсинг (Ciejek et al., 1982; Mariman et al., 1982) и другие функции (Pienta and Coffey, 1984). Следует добавить также специфические для эукариот белки, обеспечивающие компактную форму хроматина (гистоны), системы, контролирующие регулярность деления эукариотической клетки (митоз) и др. Мы видим, что объем генетической информации, которую необходимо было освоить формировавшемуся эукариоту (в форме новых генов), был очень велик. Создание цитоскелета стало также необходимым условием образования современной эукариотической клетки, так как позволяло увеличить клеточный объем, фиксировать положение ядра, перейти к активному транспорту и др. Но и эта задача могла решаться уже после акта симбиоза, инициировавшего весь процесс формирования эукариотической клетки. Следует также иметь в виду, что такой акт мог бы состояться 3 и даже 3.5 млрд лет тому назад, когда потенциальные симбионты (архе и соответствующие формы бактерий) уже существовали на Земле. С другой стороны, отпечатки клеток с ядром и другими признаками, характерными для эукариотов, обнаружены в отложениях, возраст которых не более 1.7 млрд лет. Это означает, что на эволюцию от момента симбиотического образования химерной клетки до появления эукариотической клетки было отпущено свыше одного миллиарда лет – даже больше, чем на всю предшествовавшую эволюцию на Земле. Сколько на самом деле продолжался этот процесс – неизвестно, т. к. неясно и вряд ли может быть установлено, когда состоялся инициировавший его акт симбиоза.

Идея вторичности эукариотов, т. е. образования их тем или иным путем из прокариотических клеток, является доминирующей, но не единственной. Некоторые авторы отмечают, что прокариоты более совершенны, т. к. устроены рациональнее, чем эукариоты. Согласно этой линии рассуждений, передача функции хранителя наследственного материала от РНК к ДНК сопровождалась объединением небольших хромосом в крупные. При этом оказывалось неизбежным появление в генах вставок (интронов), искажающих генетическую информацию. Соответственно, сплайсинг и формирование ядра, разделяющего процессы транскрипции и трансляции, оказались вынужденными следствиями переходного периода. Согласно этой схеме, последний общий предшественник был эукариотом, а прокариоты архе и бактерии являются сестринскими линиями, происшедшими от ранних эукариот, эволюционировавших в направлении упрощения метаболизма и структуры клетки (Brinkmann and Philippe, 1999; Poole et al., 1999). Появились ветви клеток, в которых гены были освобождены от интронов, благодаря чему отпала нужда и в сплайсинге, и в самих ядрах. Сложно организованный цитоскелет также перестал быть необходимым и сошел на нет. Осваивая новые ниши, прокариоты приобрели способность к фотосинтезу и окислительному фосфорилированию. Наконец, симбиоз обладавших усовершенствованной энергетикой прокариот с породившими их когда-то эукариотами позволил последним значительно расширить ареал существования, а главное, привел к появлению животных и растений. Однако эта не лишенная изящества схема не подтверждена полученными к настоящему времени палеонтологическими данными, которые указывают на присутствие прокариот в значительно более ранних отложениях, причем разрыв составляет не менее 1.5 млрд лет. Вместе с тем, следует отметить, что находки, сделанные в ранних отложениях, пока весьма ограничены. Обнаружение в них именно прокариот может быть объяснено их более широким, по сравнению с первичными эукариотами, распространением. Обнаружение в ранних осадочных породах отпечатков клеток, содержавших ядра, позволит обсуждать описанную гипотезу всерьез. На первичность эукариот могли также указать данные мутационного анализа генов, которые показали бы, что именно гены, контролирующие сплайсинг, формирование элементов ядерного матрикса и других чисто ядерных структур, наиболее древние. Однако, насколько известно автору, таких данных нет. Мы будем придерживаться более обоснованной сегодня, хотя и остающейся весьма схематичной, концепции, утверждающей, что первичны прокариоты, а формирование эукариот было инициировано симбиозом архе и бактерии.

Главным аргументом в пользу разделенного во времени появления ранних эукариот, а лишь затем приобретения ими митохондрий, было отсутствие митохондрий у протист, рассматриваемых как примитивные эукариоты. Однако генетический анализ выявил у протист гены бактериального происхождения, которые могли принадлежать ранее присутствовавшим митохондриям (Hasegawa and Hashimoto, 1999). К аналогичному выводу привело исследование эукариотических клеток, у которых нет аппарата Гольджи, шероховатого эндо-плазматического ретикулума и некоторых других характерных для эукариот признаков. Их отсутствие достаточно убедительно может быть объяснено не исходной примитивностью этих эукариотических клеток, а утерей определенных признаков в ходе позднейшей эволюции (Clark, 1999).

Выше, при описании акта симбиоза бактерии и архе, положившего начало формированию эукариотической клетки, была использована модель проникновения архе в бактерию, т. е. бактерия, образовав цитоплазму химерной клетки, потеряла способность к автономному размножению. Потребовался дополнительный акт симбиоза – внедрение протеобактерии в формирующийся или уже сформированный эукариот, чтобы могли образоваться митохондрии.

Мартин и Кунин (Martin and Koonin, 2006) предложили в определенном смысле зеркальную схему, согласно которой при инициировавшем формирование эукариот акте симбиоза бактерия внедрилась в архе и приспособилась к автономному существованию (см. также Vellai and Vida, 1999; Martin, 2005). Так образовались митохондрии. В процессе их формирования многие бактериальные гены объединились с хромосомой архе, приняв участие в формировании ядерного генома. Согласно этой модели, формирование митохондрий и ядерных структур происходило параллельно, и отдельный акт симбиоза для появления митохондрий не потребовался.

5.4. Существовал ли последний общий предшественник, то есть был ли единый ствол у дерева жизни?

Прежде чем вернуться к дереву жизни, следует упомянуть высказывания, ставящие под сомнение само понятие “последний общий предшественник”. Группа авторов полагает, что разделение ветвей дерева жизни произошло прежде, чем образовались клеточные мембраны, т. е. еще на доклеточном уровне. Это позволяет объяснить существенные различия в структуре клеточных оболочек архе и бактерий (Koga et al., 1998; Martin and Russell, 2003). С близкими по смыслу идеями недавно выступили некоторые известные эволюционисты (Doolittle, 1999; Woese, 2000). Они полагают, что корневая система (множество параллельно существовавших доклеточных и раннеклеточных структур) не трансформировалась в единый ствол дерева жизни, представленный последним общим предшественником, а сформировала ряд побегов, которые обменивались информацией путем горизонтальных переносов. Эти переплетенные побеги дали начало дереву жизни (Рис. 4В). Такая трактовка раннего периода жизни на Земле правомерна, если принять, что побеги, происходившие от разных предклеточных структур и сохранявшие значительную самостоятельность при эволюции, тем не менее, вышли на общие качества: близкую структурную организацию, схожий метаболизм (синтез белка на рибосомах и др.) и практически одинаковый генетический аппарат, включая генетический код. Только в этом случае последующие горизонтальные переносы были бы эффективными. Однако столь полный параллелизм при независимом эволюционном развитии побегов представляется практически невероятным. Предположение же, что функциональная и генетическая близость многих побегов была обусловлена постоянными обменами генетической информацией, происходившими еще на предклеточной и раннеклеточной стадиях, приводит к представлению о коллективном развитии побегов (Woese, 2002), что, по сути дела, мало отличается от традиционного представления о единой стволовой линии.

Перейти на страницу:

Марк Мосевицкий читать все книги автора по порядку

Марк Мосевицкий - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Распространненость жизни и уникальность разума? отзывы

Отзывы читателей о книге Распространненость жизни и уникальность разума?, автор: Марк Мосевицкий. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*