Брайан Керниган - Язык программирования Си. Издание 3-е, исправленное
Упражнение 5.1. Функция getint написана так, что знаки - или +, за которыми не следует цифра, она понимает как "правильное" представление нуля. Скорректируйте программу таким образом, чтобы в подобных случаях она возвращала прочитанный знак назад во ввод.
Упражнение 5.2. Напишите функцию getfloat - аналог getint для чисел с плавающей точкой. Какой тип будет иметь результирующее значение, задаваемое функцией getfloat?
5.3 Указатели и массивы
В Си существует связь между указателями и массивами, и связь эта настолько тесная, что эти средства лучше рассматривать вместе. Любой доступ к элементу массива, осуществляемый операцией индексирования, может быть выполнен с помощью указателя. Вариант с указателями в общем случае работает быстрее, но разобраться в нем, особенно непосвященному, довольно трудно.
Объявление
int a[10];
Определяет массив a размера 10, т. е. блок из 10 последовательных объектов с именами a[0], a[1],…, a[9].
Запись a[i] отсылает нас к i-му элементу массива. Если pa есть указатель на int, т. е. объявлен как
int *pa;
то в результате присваивания
pa =&a[0];
pa будет указывать на нулевой элемент a, иначе говоря, pa будет содержать адрес элемента a[0].
Теперь присваивание
x = *pa;
будет копировать содержимое a[0] в x.
Если pa указывает на некоторый элемент массива, то pa+1 по определению указывает на следующий элемент, pa+i - на i-й элемент после pa, a pa-i - на i-й элемент перед pa. Таким образом, если pa указывает на a[0], то
*(pa+1)
есть содержимое a[1], a+i - адрес a[i], a *(pa+i) - содержимое a[i].
Сделанные замечания верны безотносительно к типу и размеру элементов массива a. Смысл слов "добавить 1 к указателю", как и смысл любой арифметики с указателями, состоит в том, чтобы pa+1 указывал на следующий объект, a pa+i - на i-й после pa.
Между индексированием и арифметикой с указателями существует очень тесная связь. По определению значение переменной или выражения типа массив есть адрес нулевого элемента массива. После присваивания
pa =&a[0];
ра и a имеют одно и то же значение. Поскольку имя массива является синонимом расположения его начального элемента, присваивание pa=&a[0] можно также записать в следующем виде:
pa = a;
Еще более удивительно (по крайней мере на первый взгляд) то, что a[i] можно записать как *(a+i). Вычисляя a[i], Си сразу преобразует его в *(a+i); указанные две формы записи эквивалентны. Из этого следует, что полученные в результате применения оператора & записи &a[i] и a+i также будут эквивалентными, т. е. и в том и в другом случае это адрес i-го элемента после a. С другой стороны, если pa - указатель, то его можно использовать с индексом, т. е. запись pa[i] эквивалентна записи *(pa+i). Короче говоря, элемент массива можно изображать как в виде указателя со смещением, так и в виде имени массива с индексом.
Между именем массива и указателем, выступающим в роли имени массива, существует одно различие. Указатель - это переменная, поэтому можно написать pa=a или pa++. Но имя массива не является переменной, и записи вроде a=pa или a++ не допускаются.
Если имя массива передается функции, то последняя получает в качестве аргумента адрес его начального элемента. Внутри вызываемой функции этот аргумент является локальной переменной, содержащей адрес. Мы можем воспользоваться отмеченным фактом и написать еще одну версию функции strlen, вычисляющей длину строки.
/* strlen: возвращает длину строки */
int strlen(char *s)
{
int n;
for (n = 0; *s!= ' '; s++)
n++;
return n;
}
Так как переменная s - указатель, к ней применима операция ++; s++ не оказывает никакого влияния на строку символов функции, которая обратилась к strlen. Просто увеличивается на 1 некоторая копия указателя, находящаяся в личном пользовании функции strlen. Это значит, что все вызовы, такие как:
strlen("3дравствуй, мир"); /* строковая константа */
strlen(array); /* char array[100]; */
strlen(ptr); /* char *ptr; */
правомерны.
Формальные параметры
char s[];
и
char *s;
в определении функции эквивалентны. Мы отдаем предпочтение последнему варианту, поскольку он более явно сообщает, что s есть указатель. Если функции в качестве аргумента передается имя массива, то она может рассматривать его так, как ей удобно - либо как имя массива, либо как указатель, и поступать с ним соответственно. Она может даже использовать оба вида записи, если это покажется уместным и понятным.
Функции можно передать часть массива, для этого аргумент должен указывать на начало подмассива. Например, если a - массив, то в записях
f(&a[2])
или
f(a+2)
функции f передается адрес подмассива, начинающегося с элемента a[2]. Внутри функции f описание параметров может выглядеть как
f(int arr[]) {…}
или
f(int *arr) {…}
Следовательно, для f тот факт, что параметр указывает на часть массива, а не на весь массив, не имеет значения.
Если есть уверенность, что элементы массива существуют, то возможно индексирование и в "обратную" сторону по отношению к нулевому элементу; выражения p[-1], p[-2] и т.д. не противоречат синтаксису языка и обращаются к элементам, стоящим непосредственно перед p[0]. Разумеется, нельзя "выходить" за границы массива и тем самым обращаться к несуществующим объектам.
5.4 Адресная арифметика
Если p есть указатель на некоторый элемент массива, то p++ увеличивает p так, чтобы он указывал на следующий элемент, а p+=i увеличивает его, чтобы он указывал на i-й элемент после того, на который указывал ранее. Эти и подобные конструкции - самые простые примеры арифметики над указателями, называемой также адресной арифметикой.
Си последователен и единообразен в своем подходе к адресной арифметике. Это соединение в одном языке указателей, массивов и адресной арифметики - одна из сильных его сторон. Проиллюстрируем сказанное построением простого распределителя памяти, состоящего из двух программ. Первая, alloc(n), возвращает указатель p на n последовательно расположенных ячеек типа char; программой, обращающейся к alloc, эти ячейки могут быть использованы для запоминания символов. Вторая, afree(p), освобождает память для, возможно, повторной ее утилизации. Простота алгоритма обусловлена предположением, что обращения к afree делаются в обратном порядке по отношению к соответствующим обращениям к alloc. Таким образом, память, с которой работают alloc и afree, является стеком (списком, в основе которого лежит принцип "последним вошел, первым ушел"). В стандартной библиотеке имеются функции malloc и free, которые делают то же самое, только без упомянутых ограничений: в параграфе 8.7 мы покажем, как они выглядят.
Функцию alloc легче всего реализовать, если условиться, что она будет выдавать куски некоторого большого массива типа char, который мы назовем allocbuf. Этот массив отдадим в личное пользование функциям alloc и afree. Так как они имеют дело с указателями, а не с индексами массива, то другим программам знать его имя не нужно. Кроме того, этот массив можно определить в том же исходном файле, что и alloc и afree, объявив его static, благодаря чему он станет невидимым вне этого файла. На практике такой массив может и вовсе не иметь имени, поскольку его можно запросить с помощью malloc у операционной системы и получить указатель на некоторый безымянный блок памяти.
Естественно, нам нужно знать, сколько элементов массива allocbuf уже занято. Мы введем указатель allocp, который будет указывать на первый свободный элемент. Если запрашивается память для n символов, то alloc возвращает текущее значение allocp (т. е. адрес начала свободного блока) и затем увеличивает его на n, чтобы указатель allocp указывал на следующую свободную область. Если же пространства нет, то alloc выдает нуль. Функция afree(p) просто устанавливает allocp в значение p, если оно не выходит за пределы массива allocbuf.