Охота на электроовец. Большая книга искусственного интеллекта - Сергей Сергеевич Марков
2800
Zhang H., Xu T., Li H., Zhang S., Wang X., Huang X., Metaxas D. (2018). StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks // https://arxiv.org/abs/1710.10916
2801
Wah C., Branson S., Welinder P., Perona P., Belongie S. (2011). The Caltech-UCSD Birds-200-2011 Dataset. Technical Report CNS-TR2011-001, California Institute of Technology // http://www.vision.caltech.edu/visipedia/papers/CUB_200_2011.pdf
2802
Zhang H., Xu T., Li H., Zhang S., Wang X., Huang X., Metaxas D. (2017). StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks // https://arxiv.org/abs/1710.10916
2803
Sun W., Chen Z. (2019). Learned Image Downscaling for Upscaling using Content Adaptive Resampler // https://arxiv.org/abs/1907.12904
2804
Lim B., Son S., Kim H., Nah S., Lee K. M. (2017). Enhanced Deep Residual Networks for Single Image Super-Resolution // https://arxiv.org/abs/1707.02921
2805
Ma C., Rao Y., Cheng Y., Chen C., Lu J., Zhou J. (2020). Structure-Preserving Super Resolution with Gradient Guidance // https://arxiv.org/abs/2003.13081
2806
Niu B., Wen W., Ren W., Zhang X., Yang L., Wang S., Zhang K., Cao X., Shen H. (2020). Single Image Super-Resolution via a Holistic Attention Network // https://arxiv.org/abs/2008.08767
2807
Kawulok M., Benecki P., Piechaczek S., Hrynczenko K., Kostrzewa D., Nalepa J. (2019). Deep Learning for Multiple-Image Super-Resolution // https://arxiv.org/abs/1903.00440
2808
Zhu M., Pan P., Chen W., Yang Y. (2019). DM-GAN: Dynamic Memory Generative Adversarial Networks for Text-to-Image Synthesis // https://arxiv.org/abs/1904.01310
2809
Xu T., Zhang P., Huang Q., Zhang H., Gan Z., Huang X., He X. (2017). AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks // https://arxiv.org/abs/1711.10485
2810
Liang J., Pei W., Lu F. (2019). CPGAN: Full-Spectrum Content-Parsing Generative Adversarial Networks for Text-to-Image Synthesis // https://paperswithcode.com/paper/cpgan-full-spectrum-content-parsing
2811
Parmar N., Vaswani A., Uszkoreit J., Kaiser Ł., Shazeer N., Ku A., Tran D. (2018). Image Transformer // https://arxiv.org/abs/1802.05751
2812
Wu B., Xu C., Dai X., Wan A., Zhang P., Yan Z., Tomizuka M., Gonzalez J., Keutzer K., Vajda P. (2020). Visual Transformers: Token-based Image Representation and Processing for Computer Vision // https://arxiv.org/abs/2006.03677
2813
Dosovitskiy A., Beyer L., Kolesnikov A., Weissenborn D., Zhai X., Unterthiner T., Dehghani M., Minderer M., Heigold G., Gelly S., Uszkoreit J., Houlsby N. (2020). An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale // https://arxiv.org/abs/2010.11929
2814
Touvron H., Cord M., Douze M., Massa F., Sablayrolles A., Jégou H. (2020). Training data-efficient image transformers & distillation through attention // https://arxiv.org/abs/2012.12877
2815
Liu Z., Lin Y., Cao Y., Hu H., Wei Y., Zhang Z., Lin S., Guo B. (2021). Swin Transformer: Hierarchical Vision Transformer using Shifted Windows // https://arxiv.org/abs/2103.14030
2816
Carion N., Massa F., Synnaeve G., Usunier N., Kirillov A., Zagoruyko S. (2020). End-to-end Object Detection with Transformers // https://ai.facebook.com/research/publications/end-to-end-object-detection-with-transformers
2817
Zhu X., Su W., Lu L., Li B., Wang X., Dai J. (2020). Deformable DETR: Deformable Transformers for End-to-End Object Detection // https://arxiv.org/abs/2010.04159
2818
Guo J., Han K., Wu H., Xu C., Tang Y., Xu C., Wang Y. (2021). CMT: Convolutional Neural Networks Meet Vision Transformers // https://arxiv.org/abs/2107.06263
2819
Wu H., Xiao B., Codella N., Liu M., Dai X., Yuan L., Zhang L. (2021). CvT: Introducing Convolutions to Vision Transformers // https://arxiv.org/abs/2103.15808
2820
Touvron H., Cord M., Sablayrolles A., Synnaeve G., Jégou H. (2021). Going deeper with Image Transformers // https://arxiv.org/abs/2103.17239
2821
Yuan K., Guo S., Liu Z., Zhou A., Yu F., Wu W. (2021). Incorporating Convolution Designs into Visual Transformers // https://arxiv.org/abs/2103.11816
2822
Chen M., Peng H., Fu J., Ling H. (2021). AutoFormer: Searching Transformers for Visual Recognition // https://arxiv.org/abs/2107.00651
2823
Han K., Xiao A., Wu E., Guo J., Xu C., Wang Y. (2021). Transformer in Transformer // https://arxiv.org/abs/2103.00112
2824
Wang Y., Huang R., Song S., Huang Z., Huang G. (2021). Not All Images are Worth 16x16 Words: Dynamic Transformers for Efficient Image Recognition // https://arxiv.org/abs/2105.15075
2825
Chen X., Hsieh C.-J., Gong B. (2021). When Vision Transformers Outperform ResNets without Pre-training or Strong Data Augmentations // https://arxiv.org/abs/2106.01548
2826
Dai Z., Liu H., Le Q. V., Tan M. (2021). CoAtNet: Marrying Convolution and Attention for All Data Sizes // https://arxiv.org/abs/2106.04803
2827
Liu Z., Hu H., Lin Y., Yao Z., Xie Z., Wei Y., Ning J., Cao Y., Zhang Z., Dong L., Wei F., Guo B. (2021). Swin Transformer V2: Scaling Up Capacity and Resolution // https://arxiv.org/abs/2111.09883
2828
Li Y., Wu C.-Y., Fan H., Mangalam K., Xiong B., Malik J., Feichtenhofer C. (2021). Improved Multiscale Vision Transformers for Classification and Detection // https://arxiv.org/abs/2112.01526
2829
Dong X., Bao J., Zhang T., Chen D., Zhang W., Yuan L., Chen D., Wen F., Yu N. (2021). PeCo: Perceptual Codebook for BERT Pre-training of Vision Transformers // https://arxiv.org/abs/2111.12710
2830
Wu S., Wu T., Tan H., Guo G. (2021). Pale Transformer: A General Vision Transformer Backbone with Pale-Shaped Attention // https://arxiv.org/abs/2112.14000
2831
Liu Z., Mao H., Wu C.-Y., Feichtenhofer C., Darrell T., Xie S. (2022). A ConvNet for the 2020s // https://arxiv.org/abs/2201.03545