Питер Бернстайн - Против богов: Укрощение риска
Греки знали это соотношение и называли его золотой пропорцией. Эта величина определяет пропорции Пантеона, игральных карт и кредитных карточек и здания Генеральной Ассамблеи Организации Объединенных Наций в Нью-Йорке. Горизонтальная перекладина большинства христианских крестов делит вертикальную в том же отношении: длина над перекладиной составляет 61,8% от длины под пересечением. Золотая пропорция обнаруживается также в природных явлениях — в цветочных лепестках, в листьях артишока, в черешках пальмовых листьев. Отношение длины части тела человека выше пупка к длине части ниже пупка у нормально сложенного человека равно 0,618. Длина фаланг пальцев, если последовательно идти от кончиков до ладони, соотносится так же {2}.
Одним из наиболее романтичных воплощений отношения Фибоначчи являются пропорции и форма чудесной спирали. На приведенном рисунке видно, как она формируется на основе ряда квадратов, длины сторон которых определяются рядом Фибоначчи. Процесс начинается с построения двух маленьких квадратов одинакового размера.
Построение равноугольной спирали с использованием чисел ФибоначчиНачнем с квадрата со стороной, равной единице, пристроим к нему другой такой же квадрат, к ним пристроим квадрат со стороной, равной 2, к ним пристроим квадрат со стороной, равной 3. Продолжая в том же духе, получим квадраты со сторонами, равными 5, 8, 13, 21, 34 и так далее.
(Воспроизводится с разрешения Fascinating Fibonaccis by Trudy Hammel Garland; © 1987 by Dale Seymour Publications, P. O. Box 10888, Palo Alto, CA 94303.)
На основе двух их сторон строится примыкающий к ним квадрат со стороной удвоенного размера, затем квадраты со сторонами утроенного, упятеренного и т.д. размера. Заметьте, что таким образом строится последовательность прямоугольников, причем отношения между сторонами следующих друг за другом членов последовательности образуют золотую пропорцию. Затем соединяем противоположные углы квадратов, начиная с наименьшего, дугами, являющимися продолжением друг друга, и получаем спираль.
Нам знакома эта спираль, повторяемая в форме некоторых галактик, бараньего рога, многих морских раковин или гребешков океанских волн, по которым скользят любители серфинга. Способ построения делает ее форму неизменной, и она не зависит от размера первого квадрата, с которого началось построение: форма с ростом не меняется. Журналист Уильям Хоффер заметил: «Большая золотая спираль кажется естественным способом наращивания количества без изменения качества»[2].
Кое-кто верит, что числа Фибоначчи можно использовать для различных предсказаний, в особенности относительно курса акций; такие предсказания сбываются достаточно часто, чтобы поддерживать постоянный интерес к ним. Ряд Фибоначчи настолько популярен, что в Калифорнии существует даже Американская ассоциация Фибоначчи при университете Санта-Клары, опубликовавшая с 1962 года тысячи страниц исследований по этой теме.
«Liber Abaci» Фибоначчи стала впечатляющим первым шагом на пути создания инструмента, являющегося ключом к приручению риска. Но общество еще не было готово к применению чисел для анализа связанных с риском ситуаций. Во времена Фибоначчи люди чаще связывали риск с капризами природы. Им нужно было еще научиться рассматривать его как творение рук человеческих и набраться смелости бороться с судьбой, прежде чем они смогли подойти к технологии его укрощения. Для этого понадобилось не менее двухсот лет.
***Мы сможем в полной мере постигнуть значение достижений Фибоначчи, только обратив свой взгляд к эпохе, предшествующей его рассуждениям о том, как выразить различие между 10 и 100. Даже в ней мы найдем несколько замечательных новаторов.
Примитивный человек вроде неандертальца умел считать, но необходимость в счете возникала не часто. Он отмечал прошедшие дни зарубками на камнях или стволах деревьев или выкладывал дорожку камней, фиксируя число убитых животных. Время дня определялось по солнцу, и разница между пятью минутами и получасом вряд ли имела значение.
Первые систематические попытки измерений и счета были предприняты за несколько тысячелетий до Рождества Христова[3]. Это началось, когда люди стали расселяться, чтобы выращивать хлеб, по долинам таких крупных рек, как Тигр и Евфрат, Нил, Инд, Янцзы, Миссисипи и Амазонка. Реки скоро превратились в торговые пути, по которым предприимчивые люди выходили к океанам и морям. Чтобы путешествовать на всё большие и большие расстояния, понадобились календарь, навигация и география, а они потребовали еще более точных расчетов.
Жрецы были первыми астрономами, а от астрономии произошла математика. Когда люди заметили, что зарубок на деревьях и камнях и дорожек из них уже недостаточно для решения новых задач, они стали группировать числа в десятки и двадцатки, которые было легко считать по пальцам на руках и ногах.
Хотя египтяне стали мастерами в астрономии и предсказании разливов и спада воды в Ниле, им, по-видимому, никогда не приходило в голову вмешиваться в подобные процессы и оказывать влияние на будущий ход событий. Их интеллекту, в котором доминировали обычаи, привычка к повторению годового цикла перемен и уважение к прошлому, были чужды перемены и активное отношение к будущему.
Около 450 года до Рождества Христова греки изобрели буквенную систему счисления, которая использовала 24 буквы греческого алфавита и три буквы, которые впоследствии вышли из употребления. Каждому числу от 1 до 9 соответствовала буква, а числа, кратные десяти, имели свои буквы. Например, символ π (пи) как первая буква греческого слова πέντε (пента), что означало 'пять', представлял 5; δ (дельта), первая буква от δέκα (дека), что означало 'десять', представляла 10; α (альфа), первая буква алфавита, представляла 1, и ρ (ро) представляла 100. Таким образом, 115 писалось как ро-дека-пента, или ρδπ. Евреи, пусть и семиты, а не индоевропейцы, использовали такую же буквенно-цифровую систему счисления[4].
Хотя относительное удобство этих буквочисел помогало людям строить сложные сооружения, путешествовать на большие расстояния и точнее фиксировать время, такая система счисления накладывала серьезные ограничения. Для сложения, вычитания, умножения и деления буквы можно использовать только с большим трудом, а считать в уме практически невозможно. Эти заместители чисел пригодны только для записи результатов вычислений, выполненных другими методами, чаще всего с помощью счетов. Счеты — древнейшее вычислительное устройство в истории — были незаменимы при выполнении расчетов, пока между 1000-м и 1200 годами после Рождества Христова на сцену не выступила индо-арабская цифровая система счисления.
На счетах каждому разряду числа соответствовали колонки из десяти костей; когда при сложении, например, в соответствующей колонке получалось число, большее десяти, сдвигалась фишка на следующей колонке, а на первой фиксировалось превышение результатом десяти, и т.д. Наши выражения «один в уме» и «три сверху» ведут свое происхождение от счетов[5].
***Несмотря на ограниченные возможности этих ранних форм математики, они сделали возможным значительное развитие знания, в частности в геометрии — языке фигур — и ее многочисленных приложениях в астрономии, навигации и механике. Наиболее впечатляющих результатов добились греки и их коллеги в Александрии. Только Библия выдержала больше изданий и напечатана в большем количестве экземпляров, чем самая знаменитая книга Евклида «Начала» («Elements»).
Однако не научные открытия представляются нам самым главным достижением греков. В конце концов, храмовые жрецы Египта и Вавилона неплохо изучили геометрию задолго до Евклида, и даже знаменитая теорема Пифагора — квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов — использовалась в долине Тигра и Евфрата за 2000 лет до Рождества Христова.
Уникальной чертой греческого духа была приверженность к доказательствам. «Почему?» было для них важнее, чем «что?». Они смогли заново сформулировать самые сложные вопросы потому, что их цивилизация была первой в истории, относительно свободной от смирительной рубашки всемогущего жреческого сословия. Эти же обстоятельства сделали греков первыми в мире путешественниками и колонизаторами, превратившими бассейн Средиземного моря в сферу своих интересов.
Будучи в большей степени гражданами мира, греки отвергли простые и ясные заветы, оставленные им предшествующими обществами. Их не интересовали образцы; они искали универсальные понятия, применимые везде, в любом случае. Например, с помощью простого измерения можно убедиться, что квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов. Но греков интересует, почему это так во всех прямоугольных треугольниках, больших и малых, без единого исключения. Именно с этого времени доказательство, а не вычисление стало доминировать в математической науке.