Kniga-Online.club
» » » » Александр Казанцев - Том (7). Острие шпаги

Александр Казанцев - Том (7). Острие шпаги

Читать бесплатно Александр Казанцев - Том (7). Острие шпаги. Жанр: Научная Фантастика издательство Молодая гвардия, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Назад 1 ... 82 83 84 85 86 Вперед
Перейти на страницу:

37

Задача эта сводится к выражению xn + yn = zn. (Примеч. авт.)

38

Великая теорема Ферма. (Примеч. авт.)

39

В 45-м замечании к книге Диофанта Ферма даст развернутое доказательство нерешаемости для четвертой степени уравнения: x4 + y4 = z4 в целых числах, к чему мы еще вернемся. Еще раньше, в 33-м замечании, говоря о Диофанте, Ферма написал: «Почему же он не ищет двух биквадратов, сумма которых равна квадрату? Конечно, потому, что эта задача невозможна, как это с несомненностью показывает наш метод доказательства». (Примеч. авт.)

40

Примечание автора для особо интересующихся.

Графическое решение «бинома Ньютона в третьей степени» представлено на рисунке, выполненном заслуженным деятелем науки и техники РСФСР доктором технических наук профессором М. М. Протодьяконовым. Куб у него складывается из кубов, среднего со стороной y и малого со стороной x, расположенных по диагонали большого куба, со стороной x + y, трех пластин объемом x2y и трех брусков объемом x2y, точно заполняющих оставшиеся в большом кубе места от двух первых кубов. Объемы всех этих фигур соответствуют: (x + y)3 = x3 + 3x2 y + 3xy2 + y3.

41

Примечание автора для особо интересующихся. «Метод спуска» Ферма изложен в его 45-м примечании к «Арифметике» Диофанта и в его письме к Каркави, где для доказательства того, что площадь прямоугольного треугольника не может быть равна квадрату целого числа, говорилось: «Если бы существовал некоторый прямоугольный треугольник в целых числах, который имел бы площадь, равную квадрату, то существовал бы другой треугольник, меньший этого, который обладал бы тем же свойством. Если бы существовал второй, меньший первого, который имел бы то же свойство, то существовал бы, в силу подобного рассуждения, третий, меньший второго, который имел бы то же свойство, и, наконец, четвертый, пятый, спускаясь до бесконечности. Но если задано число, то не существует бесконечности по спуску меньших его (я все время подразумеваю целые числа). Откуда заключаю, что не существует никакого прямоугольного треугольника с квадратной площадью».

Этим методом доказаны частные случаи для степеней = 3 и 4.

42

Примечание автора для особо интересующихся. «Метод подъема» гипотетически мог бы быть изложен так:

Если прямоугольный треугольник можно построить только на плоскости, имеющей два измерения, и свойством такого «плоского места» будет пифагоров закон о том, что квадрат гипотенузы равен сумме квадратов катетов, то нет оснований полагать, что подобные «законы» отражают свойства «пространственных» и «субпространственных мест» с тремя и более измерениями, что при переходе (подъеме) от плоскости к объему (кубу, параллелепипеду или другой пространственной фигуре) диагональ, скажем куба, возведенная в третью степень, будет равна сумме других отрезков, укладывающихся в эту фигуру (сторон куба) в третьей степени. И еще меньше оснований полагать, что при переходе к «невообразимым фигурам» четырех и больше измерений можно найти целочисленное решение для четвертой степени одного отрезка, равного сумме двух других отрезков в четвертых степенях каждый. Для необоснованности подобных предположений достаточно доказать, что целочисленных решений нет, скажем, для биквадратов, что и будет общим доказательством отсутствия целочисленных решений для «пространственных» и «субпространственных» фигур вообще.

Нерешаемость в целых числах уравнения с разложением числа в четвертой степени на два слагаемых в той же степени безупречно доказана Пьером Ферма с помощью его «метода спуска», а для третьей степени спустя столетие Эйлером. В наше время с помощью электронно-вычислительных машин доказана подобная нерешаемость для всех чисел до многих миллионов с показателями от 3 до 100 000, что, по мнению Ферма, доказывать уже не требовалось, поскольку для четвертой степени это доказано и для третьей степени тоже удалось доказать, подтвердив тем, что «вероятностные кривые Ферма» расходятся.

43

Математики, предполагающие, что Ферма ошибся в своем доказательстве Великой теоремы и она простыми средствами якобы недоказуема, могут отыскать «ошибку» и в приведенном здесь «гипотетическом» «методе подъема», учтя, однако, при этом как его «литературную условность», так и математическое значение упомянутых «вероятностных кривых», которые, очевидно, должны отражать поддающуюся экстраполяции закономерность. И не забыть при этом корректность практической проверки доказательства. (Прим. авт.)

44

Написан в содружестве с Марианом Сияниным.

45

Герловин И. Л. Некоторые вопросы систематизации элементарных частиц. – Труды Глав. астр, обсерватории АН СССР. Л., 1966.

46

Протодьяконов М. М. и Герловин И. Л. Электронное строение и физические свойства кристаллов. М., «Наука», 1975.

(adsbygoogle = window.adsbygoogle || []).push({});
Назад 1 ... 82 83 84 85 86 Вперед
Перейти на страницу:

Александр Казанцев читать все книги автора по порядку

Александр Казанцев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Том (7). Острие шпаги отзывы

Отзывы читателей о книге Том (7). Острие шпаги, автор: Александр Казанцев. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*