Kniga-Online.club
» » » » Александр Казанцев - Том (7). Острие шпаги

Александр Казанцев - Том (7). Острие шпаги

Читать бесплатно Александр Казанцев - Том (7). Острие шпаги. Жанр: Научная Фантастика издательство Молодая гвардия, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Название:
Том (7). Острие шпаги
Издательство:
Молодая гвардия
ISBN:
нет данных
Год:
1984
Дата добавления:
13 декабрь 2018
Количество просмотров:
107
Возрастные ограничения:
(18+) Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту для удаления материала.
Читать онлайн
Александр Казанцев - Том (7). Острие шпаги
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего согласия.
Напишите нам, и мы в срочном порядке примем меры.

Александр Казанцев - Том (7). Острие шпаги краткое содержание

Александр Казанцев - Том (7). Острие шпаги - описание и краткое содержание, автор Александр Казанцев, читайте бесплатно онлайн на сайте электронной библиотеки kniga-online.club
Социально-фантастический и приключенческий роман известного советского писателя, главным героем которого является французский математик Ферма, сформулировавший в свое время увлекательную и нерешенную до сих пор проблему теории чисел. В книге помещены четыре рассказа автора.

Иллюстрации художника Ю. Г. Макарова.

http://ruslit.traumlibrary.net

Том (7). Острие шпаги читать онлайн бесплатно

Том (7). Острие шпаги - читать книгу онлайн, автор Александр Казанцев
Назад 1 2 3 4 5 ... 86 Вперед
Перейти на страницу:

Александр Петрович Казанцев

Собрание сочинений

Том (7). Острие шпаги

Острее шпаги

Искателей истин судьба нелегка,

Но тень их достанет в веках облака

Пьер Ферма (?)Научно-фантастический роман о магистре прав, чисел и поэзии и его современниках в трех частях, с прологом и эпилогом

Пролог

Ни куб на два куба, ни квадрато-квадрат и вообще никакая, кроме квадрата, степень не может быть разложена на сумму двух таких же.

Пьер Ферма

Мы с сыном, капитаном первого ранга, инженером, думали, что едем в купе вдвоем, но, когда в окне вагона замелькали трубы уральских заводов, с верхней полки вдруг спустился человек, назвавшийся Аркадием Николаевичем. Он оказался приятным собеседником, и я ему обязан всем, что дальше расскажу.

– А я думал, что вас нет, – простодушно признался я ему.

Аркадий Николаевич улыбнулся:

– Что ж, считайте меня «мнимой величиной»[1], есть в математике такое понятие. Величина существует, и в то же время она мнимая.

– Как это понять? «Мним»? – спросил мой Олег.

Наш попутчик рассмеялся:

– Вот не слышал такого слова. Впрочем, оно точно выражает суть явления, связанного с «машиной времени».

– Вы допускаете ее? – искренне удивился я.

– В свое время категорически отрицал, ибо она противоречит закону причинности. Не может следствие произойти раньше причины, ребенок появиться раньше матери. Но потом… потом нашел оправдание.

Мой Олег сочетал в себе эмоциональность с дотошностью:

– И допускаете, что можно перенестись в недавнее прошлое, встретиться с собственной бабушкой, когда она была хорошенькой, и жениться на ней, став самому себе дедом?

– Если бы это было возможно для мнима.

– То есть?

– У каждого есть своя «машина времени» – это его ВООБРАЖЕНИЕ. Оно способно перенести и в прошлое, и в будущее, и за тридевять земель. Можно «присутствовать» при исторических событиях, скажем, стоять рядом с сумрачным императором во время битвы при Ватерлоо, но лишь как мнимая величина.

– Как мним? А это здорово! – восхитился Олег. – И Наполеон, скрестив руки на груди, пройдет сквозь меня, как через облачко тумана!..

– Поскольку вы находитесь там как плод собственного воображения.

– Словом, «я тебя вижу, а ты меня нет!»

– Если хотите, то да.

– Но ведь вас-то мы видим, а вы назвали себя мнимой величиной.

– Я просто заметил на столике вашу книжку «Теорема Ферма» и вспомнил о своем недавнем путешествии на триста лет назад, когда я находился рядом с Ферма, как «мним».

– Что? – поразился я, косясь на попутчика.

Надо сказать, что у меня склонность к фантазии сочетается со скептицизмом. Мне доводилось встречаться с «марсианином», приходившим ко мне (как я четверть века назад описал в своем рассказе «Марсианин»), чтобы доказать свое неземное происхождение, и со свидетелями приземления из космоса «летающих тарелок», даже с Иисусом Христом, который явился ко мне сообщить об «открытии самого себя». Оказывается, любое желание одного техника по телевизорам из Львова телепатически передавалось окружающим и беспрекословно выполнялось.

Видимо, я был исключением, а потому мне с немалым трудом, но все же удалось убедить его прислать (но уже из Львова) подробное описание его «прозрения». Каюсь, я терзался тем, что упустил, быть может, интересного для науки человека-экстрасенса, наделенного необыкновенными способностями.

Аркадий Николаевич не был телепатом, но, логически мысля, угадал мои опасения:

– Уверяю вас, я совершенно в своем уме. Мне просто потребовалось для теории насыпей, над которой работал, доказательство Великой теоремы Ферма.

– xn + yn = zn – не имеет целочисленных решений при n > 2, – вмешался Олег. – Но этого доказать ученые не смогли в течение трехсот лет, даже создав новую отрасль математики.

– Алгебраическую теорию чисел. Вы правы. Ферма не знал ее, написав на полях «Арифметики» Диофанта: «Ни куб на два куба, ни квадрато-квадрат и вообще (заметьте, „вообще“ – обобщение!) никакая, кроме квадрата, степень не может быть разложена (заметьте, „разложена“!) на сумму двух таких же. Я нашел удивительное доказательство этому, однако ширина полей не позволяет здесь его осуществить», – наизусть процитировал Аркадий Николаевич.

– Приведено в этой книжке, – показал я брошюру[2], захваченную Олегом в дорогу, – но дальше сказано: «Следует со всей решительностью предостеречь читателя искать элементарное доказательство теоремы Ферма. Можно быть уверенным, что это будет лишь ненужная трата труда и времени. Во всяком случае, ни издательство, ни автор книги „Теорема Ферма“ М. М. Постников ни в какую переписку по поводу теоремы Ферма вступать не будут».

– Потому мне и нужен был сам Ферма.

– Зачем?

– Чтобы получить у него его доказательство.

– А было ли оно? – вступил Олег. – Ферма мог найти собственную ошибку, как находили впоследствии ошибки в несчетных доказательствах теоремы, а потому не записал и не опубликовал своего доказательства!

– Ферма вообще почти никогда не публиковал своих доказательств. Он сделал открытие в математике и как бы просил всех принять его вызов и повторить то, что удалось ему сделать.

– Кто же он? Шутник? «Принцесса Турандот от науки» или гордец с непомерным самомнением?

– Нет, нет! Просто скромный автор «математических этюдов», предлагаемых, подобно шахматным, для решения любителям математики.

– И что же? Доказывали его выводы? Решали эти этюды?

– Только Эйлеру в следующем столетии удалось это сделать, исключая Великую теорему, которую доказал только сам Ферма.

– Почему вы в этом уверены?

– Потому что он подсказывал, как это сделать.

– И вы у него это узнали? С помощью спиритического сеанса? – иронизировал Олег.

– Нет, зачем же? С помощью анализа его намеков, изучения других сделанных им открытий и с помощью воображения, которое способно все это объединить, создав образ Ферма.

– Конечно, «бессмертного академика», как это принято во Франции.

– Он даже не слышал о таком звании. Бессмертного, но не по выбору старцев в мантиях или по королевскому указу, а по сделанному им вкладу в науку, ощутимому и в наши дни.

– И у вас, говорите вы, состоялась встреча с ним? – наседал Олег.

– Я вообразил ее. А «беседа» с ним вылилась в чтение его трудов, изданных полвека спустя его сыном Самуэлем, тоже ученым и поэтом, как отец.

(adsbygoogle = window.adsbygoogle || []).push({});
Назад 1 2 3 4 5 ... 86 Вперед
Перейти на страницу:

Александр Казанцев читать все книги автора по порядку

Александр Казанцев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Том (7). Острие шпаги отзывы

Отзывы читателей о книге Том (7). Острие шпаги, автор: Александр Казанцев. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*