Станислав Лем - Астронавты
— Вот здесь мы видим всё, что находится внутри корабля. «Космократор» имеет в длину сто семь метров, а его диаметр в самой широкой части составляет почти десять метров. Он состоит из двух веретенообразных корпусов, вложенных один в другой. Наружный корпус придаёт кораблю прочность и служит аэродинамическим обтекателем; во внутреннем, разделённом на два этажа — верхний и нижний, — помещены грузовые отсеки, жилые каюты, кабина управления и двигатель. В пространстве между корпусами находятся запасы воды и жидкого воздуха, предназначенные для потребления во время полёта, но они также должны и охранять внутренность корабля от космических лучей. На Земле нас защищает от гибельного влияния этих лучей атмосфера, а в «Космократоре» — вода и специальный панцирь из камекса, лучепоглощающего материала, действующего вдесятеро сильнее свинца. Дополнительной гарантией безопасности является берсиль, из которого сделан весь корабль. Вы знаете, что это такое?
— Знаем, знаем, — раздались голоса.
— Сейчас проверим, — сказал инженер и, отыскав прищуренными глазами самого младшего из ребят, указал на него пальцем.
— Берсиль... — мальчик глотнул воздух, — это такой металл, прочнее стали.
— Нет, это не металл, — заметил кто-то из его товарищей.
— Так что же, металл это или нет? Не знаешь? А какое у него строение?
— Там есть такие «глазки», — начал кто-то, но, не встретив поддержки, умолк.
Наступило тягостное молчание.
— Так, — произнёс инженер. — Вы оба, оказывается, правы. Берсиль и металл и не металл. Как показывает его название, он состоит из двух элементов: из бериллия и силиция, то есть кремния. Первый — металл, второй — нет. Каждый из них обладает кристаллической структурой, то есть пространственной решёткой, в углах которой находятся атомы. Берсиль образуется, когда в пустые места решётки одного элемента вставляется решётка другого. Получается «атомное переплетение», чрезвычайно прочное и твёрдое. Ну, вот вам и всё о корабле. Перейдём теперь к движущей силе. Взгляните на схему «Космократора». Вся его кормовая часть — это помещение для двигателей. От остальной части ракеты оно отделяется двухметровым лучепоглощающим экраном. Продвигаясь от носа к корме, вы увидите прежде всего нашу «мастерскую горючего». Это атомный котёл, в котором получается коммуний. У нас на корабле нет готового коммуния; мы делаем его сами из других элементов. При полной нагрузке наш котёл может дать около сорока килограммов коммуния. Кажется, что это немного, но этого достаточно, чтобы совершить десять-пятнадцать полётов до границ нашей солнечной системы. Процесс образования коммуния происходит непрерывно, даже и сейчас, но очень медленно, как мы можем увидеть.
Инженер нажал рычажок. Тотчас же засветились два циферблата, а на верхнем из «глаз насекомого», вернее — на катодном экране, появилась медленно пульсирующая черта.
— Сейчас котёл настроен на холостой ход. Для его запуска нужно извлечь тормозящие кадмиевые стержни с помощью вот этого регулятора. — Он положил руку на большую чёрную рукоять. — Тогда количество свободных нейтронов внутри котла увеличится в несколько сот миллионов раз, и образование коммуния ускорится. Что происходит дальше? Атомы коммуния с помощью особого вентилятора всасываются в следующую камеру, которая на схеме называется «Поле», так как там электромагнит создаёт магнитное поле. Оно должно быть очень мощным, поэтому электромагнит весит свыше четырёхсот тонн, что составляет более чем шестую часть веса всей ракеты. Электромагнит, как вам, наверно, известно, обеспечивает температуру вспышки коммуния. Между его полюсами возникает шар из раскалённых газов. Это, собственно говоря, маленькое искусственное солнце, которое, вращаясь в магнитном поле, выбрасывает поток частиц со скоростью нескольких тысяч километров в секунду. Если бы не магнитное поле, частицы атомов вырывались бы не только из сопел, но разлетались бы во все стороны. Раньше в очень больших урановых котлах получалось такое множество нейтронов, что в радиусе метров двадцати вокруг них нужно было оставлять совершенно пустую зону и управлять всеми операциями котла, находясь за толстыми бетонными стенами. Теперь, благодаря возможности направлять дейтроны в любую сторону, всё это ушло в прошлое, и нам остались только очень толстые стены, вроде той, под которой мы проехали. Итак, вы понимаете, что теперь двухметровый защитный экран между камерой двигателя и жилой частью ракеты не имеет для нас большого значения. Если бы поле вдруг исчезло, то в нашу сторону, вглубь ракеты, полетел бы поток быстрых частиц с таким напряжением, что никакой экран не помог бы. Чтобы вам было понятнее, приведу пример. Приближая лицо к пламени, я могу защититься от ожогов, если буду сильно дуть, отгоняя от себя раскалённые газы. Примерно такую же роль играет в ракете электромагнит, направляющий струю частиц в сопла. Таким образом создаётся движущая сила.
Остаётся сказать ещё о навигации. Вся астронавтика как наука складывается, в сущности, из двух крупных разделов, один из которых изучает взлёт и посадку, другой — собственно полёт в пустоте. Но не так-то просто ни то, ни другое. Если бы, включив старт, я передвинул вот этот рычаг до конца, то двигатель заработал бы в полную силу, то есть он развил бы мощность в три миллиона семьсот тысяч лошадиных сил. Однако делать этого нельзя... ибо все находящиеся в ракете тотчас погибли бы.
— Почему?
— Ракета, сразу набрав такую скорость, развила бы ускорение почти в три тысячи девятьсот раз больше земного. Земля притягивает всякое тело, находящееся на её поверхности, с силой, равной земному ускорению. Человек, подвергнутый двойному ускорению, весит как бы вдвое больше нормального, тройному — втрое больше, и так далее. Взгляните на этот большой циферблат. Его деления выражены в единицах «g», то есть земного ускорения. Он показывает, с каким ускорением движется ракета. Шкала, как вы видите, кончается на 50 «g». Возле 6 «g» нанесена красная чёрточка, а возле 9 «g» — две. Это потому, что человек может довольно долго выдерживать ускорение около 4 «g», а 7 «g» — только полчаса. Ускорение в 20 «g» можно выдержать всего несколько секунд. А 3900 «g» раздавили бы всех в ракете, как мощный пресс. Так вот, ракета при взлёте не должна развивать ускорение свыше 6-7 «g», и потому на шкале в этом месте имеется красный значок. Правда, вот этот предохранитель всё равно не позволил бы развить большое ускорение. Однако в некоторых случаях предохранитель может быть выключен.
— А зачем?
— Потому что корабль можно отправить вообще без команды. В первых пробных полётах мы так и делали. Тогда ограничений нет, и двигатель может работать на полную мощность. Всё, что я сказал, относится и к торможению: тогда тоже получается ускорение, но с обратным знаком. Представить себе это легко; вспомните, что происходит, когда вы сидите в поезде, который вдруг трогается: вас отбрасывает внезапно назад; а когда поезд начинает тормозить, вы ощущаете толчок в другую сторону. Скорость в момент старта не должна превышать известного предела и по другой причине. Разогреваясь от трения об атмосферу, корабль может вспыхнуть и сгореть, несмотря на прочность материалов, из которых он сделан. Вы помните, что ракета, летящая с обычной скоростью, легко может обогнать пушечный снаряд. При сверхзвуковых скоростях, каких она достигает сейчас, сопротивление воздуха становится необычайно сильным. Для уменьшения его применяются различные способы. У «Космократора» вокруг носа имеются отверстия, из которых во время прохождения сквозь атмосферу вырывается под давлением водород. Между стенкой корабля и воздухом образуется тонкий слой газа, движущийся с половинной скоростью ракеты. Это так называемая фаза с промежуточной скоростью. Температура оболочки при этом не превышает тысячи градусов, и она допустима благодаря нашей системе охлаждения. Однако если по какой-нибудь причине температура продолжает подниматься, то другой автомат снижает скорость вылетающих газов, замедляя полёт. Таким образом, мы преодолели основные трудности старта. А теперь посмотрим, что произошло бы, попади сюда человек несведущий.
(adsbygoogle = window.adsbygoogle || []).push({});