Олег Арсенов - Григорий Перельман и гипотеза Пуанкаре
Итак, вернемся в 1992 год, когда молодой, но уже довольно многообещающий сотрудник Математического института им. В. А. Стеклова Григорий Перельман попал на лекцию светила топологии Ричарда Гамильтона. Американский математик рассказывал о потоках Риччи — новом инструменте для изучения гипотезы геометризации Терстона — факта, из которого гипотеза Пуанкаре получалась как простое следствие. Эти потоки, построенные в некотором смысле по аналогии с уравнениями теплопереноса, заставляли поверхности со временем деформироваться примерно так же, как мы деформировали двумерные поверхности. Оказалось, что в некоторых случаях результатом такой деформации оказывался объект, структуру которого легко понять. Основная трудность заключалась в том, что во время деформации возникали особенности с бесконечной кривизной, аналогичные в некотором смысле черным дырам в астрофизике.
-78-
Рис. 30. Односвязное двумерное многообразие Пуанкаре
«С точки зрения тополога не существует разницы между бубликом и кофейной кружкой с ручкой. Оба эти объекта имеют дырку и могут быть трансформированы друг в друга без нарушения целостности. Для описания этого абстрактного топологического пространства Пуанкаре использовал слово "многообразие" (manifold). Простейшее двумерное многообразие — поверхность футбольного мяча, которая для тополога является сферой, даже если ее растянуть или скомкать. Доказательством того, что объект представляет собой двумерное многообразие (так называемую two-sphere), является то, что объект — односвязный (simply connected), то есть в нем нет дыр. В отличие от футбольного мяча бублик не является сферой. Если вы накинете лассо на футбольный мяч и начнете его затягивать, в результате вам удастся стянуть узел лассо в точку, при этом лассо будет все время находиться на поверхности мяча. Если вы завяжете лассо вокруг дужки бублика, стянуть его в точку, не разрушая целостности бублика, вам не удастся».
Сильвия Насер, Дэвид Грубер. Многообразная судьба. Легендарная проблема и битва вокруг ее решения-79-
Рис. 31. Преобразования двумерных многообразий (современное компьютерное моделирование)
Свойства двумерных многообразий были хорошо известны уже в середине XIX века, однако оставалось неясным, справедливо ли для трех измерений то, что истинно в случае двух. Пуанкаре предположил, что все замкнутые односвязные трехмерные многообразия (финитные многообразия без дырок) являются сферами. Эта гипотеза имела особенное значение для ученых, исследующих самое большое трехмерное многообразие — нашу Вселенную. Математическое доказательство этой гипотезы было, тем не менее, совсем не легким. Большинство попыток привело исследователей в тупик, но некоторые послужили источником важных математических открытий, таких как лемма Дена, теорема сферы и теорема о петле, ставших базовыми теоремами современной топологии.
Рис. 32. Замкнутое односвязное трехмерное пространство своеобразно иллюстрирует сфера Эшера
Гипотезу Пуанкаре можно было бы сформулировать еще так: любое замкнутое односвязное трехмерное пространство гомео-
-80-
морфно трехмерной сфере или, иначе говоря, все трехмерные поверхности в четырехмерном пространстве, гомотопически эквивалентные сфере, гомеоморфны ей. Для пояснения этой задачи часто используют наглядный пример: если обмотать яблоко резиновой лентой, то, в принципе, стягивая ленту, можно сжать яблоко в точку. Если же обмотать такой же лентой бублик, то в точку его сжать нельзя без разрыва или бублика, или резины. В таком контексте яблоко называют односвязной фигурой, бублик же не односвязен. Почти сто лет назад Пуанкаре установил, что двумерная сфера односвязная, и предположил, что трехмерная сфера тоже односвязна. Говоря простыми словами, если трехмерная поверхность в чем-то похожа на сферу, то, если ее расправить, она может стать только сферой и ничем иным. Доказать эту гипотезу не могли лучшие математики мира.
Надо вспомнить, что в феноменальном интеллектуальном забеге на «математический приз тысячелетия» участвовали и другие выдающиеся личности. Так, одним из них был видный математик и физик-теоретик китайского происхождения Шин-Тун Яу, которого тоже очень интересовали исследования Гамильтона потоков Риччи. Яу и Гамильтон познакомились в 1970-х годах и вскоре стали близкими друзьями, несмотря на разницу в темпераменте и воспитании.
Рис. 33. Ричард Гамильтон, профессор математики Колумбийского университета (США)
«Гамильтон, сын врача из Цинциннати, опровергал сложившийся стереотип математика как засушенного "ботаника". Дерзкий и непочтительный человек, он ездил верхом, занимался виндсерфингом и менял подружек как перчатки. В его
-81-
жизни математика занимала место еще одного хобби. К сорока девяти годам у него сложилась репутация превосходного лектора, но количество его опубликованных работ было относительно невелико, если не считать базовых статей о потоках Риччи; кроме того, у него практически не было учеников. Перельман прочел статьи Гамильтона, после чего отправился послушать его лекцию в ИПИ. После лекции Перельман поборол свою застенчивость и поговорил с Гамильтоном.
"Мне было очень важно расспросить его кое о чем, — вспоминал Перельман. — Он улыбался и был очень со мной терпелив. Он даже рассказал мне пару вещей, которые были им опубликованы только несколько лет спустя. Он, не задумываясь, делился со мной. Мне очень понравились его открытость и щедрость. Могу сказать, что в этом Гамильтон был не похож на большинство других математиков".
"Я работал над разными темами, хотя время от времени я мысленно возвращался к потокам Риччи, — добавил Перельман. — Не нужно быть великим математиком, чтобы увидеть, что потоки Риччи могут оказаться полезными в решении проблемы геометризации. Я чувствовал, что мне не хватает знаний. Я продолжал задавать вопросы…"
В 1996 году он написал Гамильтону длинное письмо, обозначив в нем свою идею — с надеждой на сотрудничество. "Он не ответил, — сказал Григорий. — И я решил работать один"».
Сильвия Насер, Дэвид Грубер. Многообразная судьба. Легендарная проблема и битва вокруг ее решенияМежду тем после лекционного турне по американским университетам Перельман вернулся в Россию, где начал трудиться над решением проблемы особенностей потоков Риччи и доказательством гипотезы геометризации (а вовсе не над гипотезой Пуанкаре) втайне от всех. Решая уравнение потока Риччи (математически это дифференциальное уравнение в частных производных), Григорий Яковлевич получил очень интересные результаты, позволяющие деформировать риманову метрику на многообразии. Однако немного позже он получил довольно неприятный результат, заключающийся в том, что в процессе деформации возможно образование сингулярностей — точек, в которых кривизна стремится к бесконечности. «Сингулярные решения» очень не любят физи-
(adsbygoogle = window.adsbygoogle || []).push({});