Сэм Лойд - Самые знаменитые головоломки мира
Однако на третий день мальчик пришел в школу вместе с одним из своих братьев. Выяснилось, что суммарный возраст двух мальчиков ровно вдвое превышает суммарный возраст двух девочек, так что право поделить между собой приз досталось на этот раз мальчикам.
Разгорелась настоящая борьба, и на четвертый день две девочки появились в сопровождении своей старшей сестры, противопоставив свой суммарный возраст возрасту мальчиков. Девочки, разумеется, победили, ибо их суммарный возраст ровно вдвое превысил возраст мальчиков. Эта борьба продолжалась до тех пор, пока учитель не набрал полностью нужное число учеников, но мы не будем более вникать в ее подробности. Назовите возраст самого первого мальчика, если известно, что последняя юная леди пришла в класс в тот день, когда ей исполнился 21 год.
Это простая, но довольно занятная головоломка, требующая скорее изобретательности, чем математических выкладок, и легко поддающаяся методам решения головоломок.
33
Покажите, каким образом полк солдат может войти в ворота M 1, промаршировать по всем 64 квадратам и, не миновав триумфальной арки, выйти через ворота № 2Многим памятно, какую сенсацию вызвали слова генерала Винфилда Скотта, обращенные к военному министру Стэнтону:
– Хотя у нас есть десятки командиров, которые могут привести полк солдат в парк, но ни один из них не разбирается в военной тактике настолько, чтобы вывести этих солдат обратно!
Это замечание было воспринято как ядовитая критика. Я знал генерала Скотта как умелого шахматиста и сейчас вспомнил одну любопытную шахматную головоломку, которую собирался предложить ему при случае.
Для решения этой головоломки не требуется разбираться в шахматах, просто, дабы облегчить пояснения, я позволил себе разбить парк на квадраты, уподобив его шахматной доске. Однако задача весьма занимательна. Покажите, каким образом полк солдат мог бы войти в ворота № 1, промаршировать по всем квадратам, пройти под триумфальной аркой и выйти через ворота № 2, сделав наименьшее возможное число поворотов. Все движение должно происходить ходом шахматной ладьи, и никакой квадрат нельзя посещать более одного раза.
Нарисуйте на бумаге сетку из 64 клеток 8 × 8, а затем карандашом нанесите путь, проходящий через каждую клетку, который начинался бы и заканчивался в указанных местах и не миновал бы клетку, где помещается арка. Вероятнее всего вы все же сделаете несколько попыток, прежде чем получите наилучший результат, который выглядит настолько красиво, что вы его сразу же узнаете.
34
Кто перетянет канат в последнем случае?35
Каков диаметр футбольного мяча?У меня нет патентованного чугунного носа, поэтому я не буду подвергать смертельной опасности этот важный орган, влезая в непривычную для себя игру. Бронированные ребра и мягкие прокладки на голенях не были популярны в мои студенческие годы. Мы обычно играли в футбол ногами, как то подразумевает само название игры, и никогда не пытались убить или искалечить игроков команды соперников.
Однако моя головоломка не имеет ничего общего со всеми этими бросками, ударами и «подковыванием» противника. Она просто навеяна воспоминаниями о тех днях, когда деревенским мальчишкой я любил гонять по зеленым лужайкам старомодный мягкий резиновый мяч.
Мы жили тогда в провинции и обычно заказывали мяч по почте, причем каталог спортивного магазина рекомендовал в соответствии с размерами мяча указывать точно требуемое число дюймов. Именно с этим и связана наша задача.
Нам нужно было указать требуемое число дюймов, но мы не знали, идет ли речь о площади резиновой оболочки или же об объеме воздуха, заключенного внутри мяча. Поэтому мы решили заказать мяч, у которого число квадратных дюймов, выражающее площадь поверхности, равнялось числу кубических дюймов, выражающему объем!
Сумеют ли наши любители головоломок назвать диаметр заказанного мяча?
36
Сколько акров содержится во внутреннем треугольном озере?Недавно я отправился в Лейквуд, чтобы посетить аукцион, где продавался участок земли, однако не совершил никаких покупок из-за одной необычной задачи, возникшей по ходу дела.
На афише, которую приклеивают к забору, вы видите план участка площадью в 560 акров, в него входит и треугольное озеро. Три квадратных поля на плане дают в совокупности 560 акров без озера, но, поскольку озеро включалось в распродажу, я, как и другие потенциальные покупатели, хотел знать, действительно ли площадь озера была вычтена из площади всего земельного участка.
Аукционер гарантировал «приблизительно» 560 акров. Это не удовлетворило покупателей, так что мы удалились, предоставив аукционеру возможность рассказывать свои басни кузнечикам и выкрикивать цены толстым жабам на озере, которое на поверку оказалось просто болотом.
Вопрос, который я хотел бы теперь задать любителям головоломок, состоит в том, чтобы определить, сколько акров должно содержаться в озере, окруженном квадратными полями площадью соответственно 370, 116 и 74 акра. Эта задача представляет особый интерес для тех, у кого есть математические наклонности, поскольку в ней содержится положительный и вполне определенный ответ. При обычных подходах ответ сводится к одной из неограниченно продолжающихся, но никогда не кончающихся десятичных дробей
37
Не нарушая рисунка, разрежьте данную фигуру на три части, из которых удалось бы сложить разбитый на клеточки квадратКогда мадам Пифагор спросила своего супруга, как лучше сделать квадратным остаток клетчатой афинской циновки, показанный на рисунке, знаменитый философ дал следующие пояснения.
Пунктирная линия на циновке равна, очевидно, гипотенузе прямоугольного треугольника, катеты которого совпадают со сторонами двух квадратов, которые в совокупности и образуют весь остаток. Согласно великой теореме Пифагора, эта прямая должна быть стороной квадрата, площадь которого равна сумме площадей двух упомянутых выше квадратов. (Теорема проиллюстрирована в правом верхнем углу рисунка.) Определив эту длину, мы можем разрезать остаток циновки, как показано, двумя сплошными линиями и сложить затем из трех полученных частей нужный квадрат. Этим способом можно воспользоваться, чтобы сделать правильный квадрат из любых квадратных кусков. Послушай, Фаг, – сказала мадам Пифагор, ибо дома она всегда называла мужа этим уменьшительным именем. – Я боюсь, что если циновку разрезать наклонно, то она разлохматится. А мне бы хотелось обойтись без этих неуклюжих, словно гиппопотам, прямых. Правда, можно было бы поступить и вот так: вырезать длинный кусок А, поставить его вертикально, а затем сдвинуть на одну ступеньку вниз часть С; при этом получится хороший правильный квадрат 13 х 13. Но этот способ, Фаг, мне не по душе, – продолжала она. – Видишь ли, рисунок на этом длинном куске пойдет не совсем правильно. Не смог бы ты найти такой способ, чтобы не пришлось поворачивать клеточки?
В этом и состоит головоломка мадам Пифагор.
[Чтобы задача стала яснее, обратите внимание на то, что штриховка черных клеточек идет, так сказать, с юго-запада на северо-восток. После того как мы поставим часть А вертикально, штриховка на ее черных клеточках пойдет уже с северо-запада на юго-восток. Мадам Пифагор хотела бы знать решение из трех частей, в котором не нарушились бы ни взаимное расположение черных и белых клеточек, ни наклон штриховки. – М. Г.]
38
Три невестыОдин старый денежный мешок сделал достоянием гласности, что он даст в приданое за каждой из своих дочерей столько золота, сколько весит она сама. Так что в мгновение ока у каждой из девиц появился подходящий поклонник. Все дочери вышли замуж в один и тот же день, а прежде, чем взвеситься, отведали очень тяжелого свадебного торта, отчего радостно забились сердца их суженых.
Все вместе невесты весили 396 фунтов, однако Нелли весила на 10 фунтов больше, чем Китти, а Минни весила на 10 фунтов больше, чем Нелли. Один из женихов, Джон Браун, весил ровно столько же, сколько и его невеста, тогда как Вильям Джонс весил в полтора, а Чарльз Робинсон – в два раза больше своих невест. Вместе женихи и невесты весили 1000 фунтов. Назовите имя и фамилию каждой из девушек, после того как они вышли замуж.
39
Угадайте размер двух камней, которые обменяли на пару сережекНе лишне знать, что цена бриллиантов возрастает согласно квадрату, а цена рубинов – согласно кубу их веса. Так, если бриллиант в один карат стоит 100 долларов, то камешек того же качества в два карата будет стоить уже 400 долларов, а бриллиант той же чистоты весом в три карата будет стоить 900 долларов. С другой стороны, если хороший восточный рубин весом в один карат стоит 200 долларов, то такой же камень в два карата будет стоить уже 1600 долларов.