Сэм Лойд - Самые знаменитые головоломки мира
Сорок седьмое предложение покажет, без сомнения, что многим хорошим математикам есть еще о чем подумать в связи с этой восхитительной теоремой Пифагора.
122
Добросовестный молочникОдин добросовестный молочник ежедневно, прежде чем отправиться к своим постоянным клиентам, живущим на четырех разных улицах, наполнял цельным молоком 2 больших бидона по 16 галлонов. На каждой улице молочник оставлял одинаковое число кварт молока.
Обслужив первую улицу, он шел к колонке с водой, и… его бидоны были снова полны до краев! Затем он обслуживал вторую улицу и снова шел к колонке, дабы пополнить, как и раньше, свои бидоны. Так он продолжал действовать и дальше до тех пор, пока все его счастливые клиенты не были удовлетворены.
Скажите, сколько молочник продал цельного молока на каждой из улиц, если после всех операций у него осталось в бидонах 40 кварт и 1 пинта?[15]
123
Как Рип ван Винкль может выиграть партию?В старой датской игре, положившей начало современной игре в кегли, в ряд располагаются 13 деревянных кеглей. Одним ударом шара можно сбить либо одну, либо две соседние кегли. Для того чтобы это сделать, не требуется много умения. Игроки бросают поочередно по одному шару, а цель игры состоит в том, чтобы сбить последнюю кеглю.
Горный гном, с которым Рип ван Винкль играет эту партию, только что сбил кеглю № 2. Рип должен выбрать одну из 22 возможностей: сбить одну из 12 кеглей или метнуть шар в один из 10 открытых промежутков, чтобы сбить пару соседних кеглей. Как лучше поступить Рипу, чтобы выиграть партию? Предполагается, что оба игрока могут сбить любую кеглю или любую пару соседних кеглей и что каждая из сторон располагает наилучшей стратегией.
124
Распределите свиней по четырем загонамОтвечая на старый вопрос о том, как рождаются головоломки, приходят ли они внезапно, как озарение, или являются плодом долгой и напряженной работы, я бы сказал, что, подобно другим изобретениям, они создаются и тем, и другим способом. Но почти всегда основная идея возникает благодаря какому-нибудь случайному происшествию.
Так, во время своего летнего путешествия на велосипеде я повстречал одного доброго фермера, чей яблоневый сад и родник с холодной водой сделали его маленькую ферму поистине оазисом. Хозяин ее был человеком весьма оригинальным, с неистощимым запасом острот, так что вряд ли кто из нас мог с ним потягаться. В своей обычной серьезной манере он спросил меня, знаю ли я, для чего ирландец всегда строит загон для свиней под окном своей гостиной. После того как я перебрал все возможные объяснения, он сообщил мне конфиденциальным шепотом, который был слышен за милю.
– Он строит его, чтобы держать там свиней.
Фермер просил меня не сообщать эту причину остальным членам нашей компании, которые могут принять ее за шутку. По пути домой не один из них свалился с велосипеда, вспоминая задачу Пэта.
Все это навело меня на мысль о следующей головоломке. Предположим, что у Пэта есть 21 свинья. Он держит животных в прямоугольном загоне и хочет разделить его внутренними изгородями так, чтобы свиньи распределились по четырем новым загонам. При этом внутри каждой из новых изгородей должно находиться четное число пар плюс одна дополнительная «нечетная» свинья. Не можете ли вы показать, как это нужно сделать?
125
Поросенок в садуКалитка осталась открытой, и поросенок вбежал в сад там, где вы видите заштрихованную клетку, отмеченную стрелкой. Он посетил каждую клетку сада, поворачивая только под прямым углом, а затем выбежал через белую клетку у открытой калитки. Всего поросенок сделал 20 поворотов под прямым углом.
Головоломка состоит в том, чтобы определить путь с наименьшим числом поворотов. Поросенок должен входить и выходить через те же самые клетки, посетить каждую клетку, поворачивая только под прямым углом, и не должен пересекать черную изгородь в верхнем левом углу сада.
126
Пять разносчиков газетПять смекалистых мальчишек, разносчиков газет, заключили между собой соглашение по совместной реализации своего товара. Том Смит продал на одну газету больше четверти общего количества, Билли Джонс продал на одну газету больше' четверти остатка, Нед Смит продал на одну газету больше четверти того, что осталось, а Чарли Джонс продал на одну газету больше четверти остатка. К этому моменту оба Смита вместе продали на сто газет больше, чем оба Джонса. Маленький Джимми Джонс, самый младший в группе, продал теперь все оставшиеся газеты.
Трое братьев Джонс продали больше газет, чем двое братьев Смит, но на сколько именно больше?
127
Сколько лет Мэри?В добавление к своей задаче «Сколько лет Энн?» и дабы принести извинения ее сестре Мэри, которая оставалась в тени во время публичных дебатов относительно возраста ее сестры, я предлагаю вам следующую задачу.
– Видите ли, – заметил дедушка, – суммарный возраст Мэри и Энн составляет 42 года, а Мэри вдвое старше, чем была Энн, когда Мэри была вдвое моложе, чем будет Энн, когда Энн станет втрое старше, чем была Мэри, когда Мэри была втрое старше Энн. Сколько лет Мэри?
128
Усталый ВиллиУсталый Вилли, сезонник, закончивший работу в Джойтауне, отправился в Плезантвилль одновременно с тем, как Дасти Роудс вышел из Плезантвилля. Они встретились и обменялись братским рукопожатием в тот момент, когда Вилли прошел на 18 миль больше, чем Дасти. После трогательного расставания Вилли потребовалось 13 1/2 часа, чтобы добраться до Плезантвилля, а Дасти – 24 часа, чтобы прийти в Джойтаун. Допустим, что каждый из них шел с постоянной скоростью. Сколько миль от Плезантвилля до Джойтауна?
129
Чему равна длина проволоки?Во всем, что касается Луны, всегда есть какое-то неотразимое очарование. Когда в начале прошлого века на публику обрушились сенсационные «лунные» сообщения, люди готовы были поверить любым россказням. Мистификация основывалась на наблюдениях, которые велись с помощью нового телескопа якобы небывалой силы. Публика отнеслась к сообщениям с такой доверчивостью, что мистификаторы дошли до детального описания обитателей Луны и восхитительных предметов, их окружающих. Несмотря на всю экстравагантность этих описаний, тысячи людей принимали их за чистую монету.
С состоянием дел на Луне нас знакомили многие авторы. Ариосто в своем «Неистовом Роланде» послал Астольфо в рискованное путешествие на Луну, и его описание того, что он увидел в Долине потерянных вещей, обмануло многих. Путешествие на Луну Сирано де Бержерака представляет собой не менее занятный вклад в литературу, не говоря уже о романе Жюля Верна. Но именно подробное описание такого путешествия, принадлежащее Эдгару По, столь сильно подействовало на некоего профессора по фамилии Спирвуд, что он снарядил экспедицию и на самом деле предпринял попытку добраться до Луны на воздушном шаре. Представленный здесь рисунок сделан по описаниям, опубликованным во время этого подъема. Воздушный шар был привязан к клубку проволоки, которая имела в толщину 0,01 дюйма. Предположим, что клубок имел первоначально 2 фута в диаметре и что проволока была намотана так плотно, что в клубке не оставалось зазоров. Сможет ли кто-нибудь из наших любителей головоломок сказать, чему равна общая длина проволоки?
В ответе я объясню, как можно решить эту задачу, не беспокоясь о точном значении числа π.
130
Пуля убийцыНа рисунке вы видите циферблат часов, пробитый пулей из пистолета убийцы. Пуля попала точно в его центр, выведя часы из строя. Стрелки часов спаялись вместе, образовав одну прямую линию. Очевидно, они повернулись вокруг своей оси, поскольку не могли одновременно показывать на 3 и 9.
Можете ли вы сказать, сколько было времени, когда пуля попала в часы?
131
Чему равна ширина реки?Два парома отчаливают в одно и то же мгновение от противоположных берегов Гудзона, один паром идет из Нью-Йорка в Джерси, а другой – из Джерси в Нью-Йорк. Один паром идет быстрее другого, так что они встречаются в 720 ярдах от ближайшего берега.
Прибыв к месту назначения, каждый паром стоит 10 минут, чтобы дать сойти пассажирам и принять на борт новых людей; затем он отправляется в обратный путь. Паромы вновь встречаются в 400 ярдах от другого берега. Чему равна ширина реки?
132
Положите девять спичек так, чтобы получилось десять, и шесть спичек – чтобы получилось ничтоГарри дал своей сестре девять спичек и попросил ее положить их так, чтобы они выглядели как десять. Она, в свою очередь, дала ему шесть спичек, которые он должен сделать похожими вообще на ничто. Природа этих простых трюков не носит математического характера, но они могут позабавить юных читателей.