Владимир Фетисов - Беспилотная авиация: терминология, классификация, современное состояние
Рис. 1.29. Вертолет, построенный по двухвинтовой поперечной схеме (вертолет Ми-12 1967 года постройки – самый большой в мире вертолет, диаметр несущего винта 35 м, максимальная взлетная масса 105 т)
а
б
в
г
Рис. 1.30. Концепты беспилотных вертолетов, основанные на двухвинтовой поперечной схеме
Например, для управления движением могут использоваться:
– дополнительный небольшой хвостовой винт, вращающийся в горизонтальной плоскости – для управления углом тангажа (рис. 1.28, а);
– управляемые заслонки на выходе импеллеров (рис. 1.30, а);
– повороты (на небольшой угол) вокруг своей оси балок с укрепленными на их концах роторами (рис. 1.30, б, в, г);
– небольшие отклонения балок с роторами в вертикальной плоскости относительно точек их крепления (рис. 1.30, г);
– изменение соотношения частот вращения винтов и др.
Очень часто в беспилотных вертолетах, построенных по двухвинтовой поперечной схеме, используют не открытые винты, а винты, защищенные кольцевым кожухом (англ.: ducted fan), или импеллеры (рис. 1.30, а, в). Это увеличивает эффективность винтов и делает более безопасными полеты в условиях возможных столкновений с препятствиями.
Легкие БПЛА, построенные по данной схеме, часто называют бикоптерами (англ.: bicopter, twincopter, dualcopter). Их можно классифицировать также как подкласс мультикоптеров (см. далее – табл. 1.3).
Двухвинтовая продольная схема (англ.: tandem rotor helicopter). У таких вертолетов реактивный момент компенсируется за счет противоположного направления вращения винтов, которые расположены один за другим вдоль фюзеляжа (рис. 1.31). Несущие винты располагаются с перекрытием, причем задний винт имеет превышение, чтобы уменьшить вредное влияние на него потока от переднего винта. Достоинство схемы – большой объем грузовой кабины. Недостатками являются сложная система трансмиссии, необходимость синхронизации вращения несущих винтов, большие индуктивные потери при горизонтальном полете и переменные нагрузки на несущих винтах, а также сложная посадка при авторотации.
Рис. 1.31. Пример беспилотного вертолета, построенного по двухвинтовой продольной схеме – DP-6 Whisper компании Dragonfly Pictures (США, 2007). Назначение: разведка, ретрансляция ТВ-сигнала. Длина 3,35 м. Диаметр ротора 3,2 м. Максимальная взлетная масса 215 кг, масса полезной нагрузки 34 кг. Скорость 185 км/ч. Продолжительность полета 5,5 ч. Двигатель: ДВС, 97 л.с.
Схема с перекрещивающимися несущими винтами (синхроптер) (англ.: intermeshing rotor helicopter). У таких вертолетов несущие винты расположены по бокам фюзеляжа, а их оси наклонены наружу (рис. 1.32). Из-за наклона винтов реактивные моменты уравновешиваются только относительно вертикальной оси, а их проекции относительно поперечной оси складываются, образуя момент тангажа, что необходимо учитывать при расчете продольной устойчивости. Достоинством схемы являются малые габариты вертолета, а недостатками – необходимость синхронизации вращения винтов, сложная система трансмиссии, большой уровень вибраций, возникновение продольного момента, усложняющего балансировку вертолета. Вертолет хорошо приспособлен для вертикального подъема грузов.
Рис. 1.32. Синхроптер К-МАХ фирмы Kaman Aerospace (США). Беспилотная версия разрабатывается совместно с фирмой Lockheed Martin. Способен перевозить грузы массой до 2,7 тонны на расстояние до 500 километров. Максимальная скорость до 185 км/ч. В 2011 г. использовался в Афганистане в беспилотном режиме для доставки боеприпасов.
Реактивный вертолет (англ.: tip jet helicopter). У таких вертолетов механический привод несущего винта заменен реактивным. Суммарный крутящий момент на втулке несущего винта близок к нулю, так как момент несущего винта от сил сопротивления воздуха уравновешивается моментом, создаваемым тягой реактивных двигателей или сопел, установленных на концах лопастей (рис. 1.33).
Рис. 1.33. Экспериментальный реактивный мини-вертолет с пульсирующими реактивными двигателями, установленными на концах лопастей (СССР, 1947 год)
При этом отпадает необходимость в мощном рулевом винте. Реактивный привод несущего винта может осуществляться, например, установкой на концах лопастей реактивных двигателей различного типа, топливо к которым подается через втулку и лопасти винта. Достоинствами вертолетов с реактивным приводом являются простая система трансмиссии и высокая весовая отдача. К недостаткам следует отнести сложную конструкцию втулки и лопасти несущего винта, трудность создания специальных двигателей, работающих в поле центробежных сил, большой расход топлива, а также шум от прямоточных и пульсирующих воздушно-реактивных двигателей.
Пример беспилотного вертолета такой схемы – аппарат ORCA швейцарской фирмы Swiss Unmanned Systems (рис. 1.34). У этого вертолета реактивный двигатель мощностью 215 л.с. установлен сверху. От него горячий воздух (700 °С) подается через полые лопасти к соплам, расположенным на окончаниях этих лопастей. Максимальная взлетная масса вертолета 350 кг, масса полезной нагрузки 120 кг. Потолок составляет 375 м. Длительность полета 2,5 ч.
Вертолеты с крылом. Рост скорости вертолета ограничен срывом потока с отступающей лопасти несущего винта. Для увеличения скорости полета необходимо разгрузить несущий винт. Это может осуществляться постановкой крыла на вертолет. Типичные примеры приведены на рис. 1.35.
Рис. 1.34. Реактивный беспилотный вертолет ORCA фирмы Swiss Unmanned Systems (Швейцария, 2011)
Рис. 1.35. Вертолеты с крылом
Винтокрылы. Для увеличения скорости полета у этих аппаратов используют крылья и дополнительные тянущие двигатели. Подъемная сила на режиме вертикального полета создается несущим винтом, а на режиме горизонтального полета – крылом с дополнительными тянущим (или толкающим) винтом. В англоязычных источниках этот класс аппаратов встречается под самыми разными названиями: gyrodyne, compound helicopter, compound gyroplane, heliplane [34].
Несущих винтов у винтокрыла может быть два (как у вертолета Ка-22, рис. 1.36) или один (как у вертолета Eurocopter ХЗ, рис. 1.37). Возможны также варианты с несущими винтами, выполненными по сосной схеме, как у винтокрыла Sikorsky S-97 Raider (рис. 1.38).
Рис. 1.36. Винтокрыл Ка-22 (СССР, 1960)
Рис. 1.37. Винтокрыл Eurocopter ХЗ. Выпускается с 2010 г. компанией Eurocopter (Франция-Германия). Максимальная крейсерская скорость 430 км/ч
Винтокрыл, обладая несущим винтом, может производить вертикальный взлёт и посадку, как вертолёт. В полёте наличие крыла и дополнительных движителей, как у самолёта, позволяет ему развивать достаточно большую скорость по сравнению с аналогичным вертолётом, что является основным преимуществом. В горизонтальном полёте несущий винт винтокрыла работает в режиме авторотации (или очень близким к нему), как у автожира. Недостатком является сложность конструкции.
Рис. 1.38. Sikorksy S-97 Raider – перспективный скоростной многоцелевой винтокрыл (США). Летные испытания планируются на 2014 г. Разрабатывается в пилотируемой и беспилотной версиях. Максимальная крейсерская скорость 490 км/ч
Гибридные винтокрылые аппараты – автожиры и конвертопланы. Кроме рассмотренных классов аппаратов самолетного и вертолетного типа существуют их гибридные разновидности, такие как автожиры и конвертопланы, которые имеют некоторые признаки как вертолетов, так и самолетов.
Автожир (другие названия: гирокоптер, гироплан, ротаплан, англоязычные: autogiro, gyrocopter, gyroplane, rotoplane) – схема, подобная самолёту, у которого в качестве крыла (или в дополнение к нему) установлен свободно вращающийся винт (рис. 1.39) [35].
Как и вертолёту, автожиру несущий винт необходим для создания подъёмной силы, однако создание подъемной силы основным винтом автожира основано на другом принципе. Он создает виртуальную дисковую поверхность, при набегании на которую встречного потока воздуха и создаётся подъёмная сила. Здесь существенно, что в полёте этот винт наклонён назад, против потока – подобно фиксированному крылу с положительным углом атаки (вертолёт, наоборот, наклоняет винт в сторону движения, т.к. создаёт приводным несущим винтом и подъёмную, и горизонтальную пропульсивную силы одновременно). Кроме несущего ротора, автожир обладает ещё и тянущим (рис. 1.39, а) или толкающим (рис. 1.39, б) маршевым винтом (пропеллером), как и у обычного самолёта. Этот маршевый винт и сообщает автожиру горизонтальную скорость [36-38 ].