В. Красник - Эксплуатация электрических подстанций и распределительных устройств
нарушение режимов обжига и охлаждения;
попадание в стекломассу стеклянных изоляторов кусочков шихты, огнеупорных материалов, в местах нахождения которых возникают местные напряжения, приводящие к разрушению изолятора при колебаниях температуры и механическом воздействии.
К основным факторам старения изоляции относится воздействие механических нагрузок, в результате чего в местах сочленений диэлектрика с арматурой образуются трещины, ускоренное старение компенсирующих промазок и прокладок, приводящее к снижению прочностных характеристик изоляторов, влияние изменений температуры окружающей среды, а также влияние атмосферных химически активных веществ.
Поверхность изоляторов загрязняется уносами промышленных предприятий и различными непромышленными уносами (грунтовая пыль, морская соль и т. д.). Наличие на поверхности изолятора сухого осадка практически не оказывает влияния на его разрядные характеристики. Увлажненное загрязняющее вещество образует электролит, который под действием приложенного к изолятору напряжения приводит к увеличению тока утечки по его поверхности с последующим возможным перекрытием изолятора.
Для повышения надежности работы изоляции в условиях загрязнений необходимы следующие мероприятия:
усиление изоляции путем введения в гирлянды дополнительных элементов, а также использование грязестойких изоляторов;
протирка изоляции тряпками, смоченными в воде или растворителе;
обмывка изоляторов под напряжением струей воды;
применение гидрофобных покрытий, противодействующих возникновению дорожек, проводящих ток при увлажненной поверхности.
С точки зрения применения изоляционных материалов изоляторы делятся:
на композитные (применение нескольких полимерных материалов);
цельные (применен один полимерный материал);
традиционные (фарфор, стекло) с полимерным покрытием;
традиционные с дополнительными полимерными элементами или ребрами.
В отечественной электроэнергетике наибольшее применение получили композитные изоляторы, содержащие изоляционное тело из высокопрочного армированного стеклоровингом эпоксидного компаунда, металлической арматуры и защитной оболочки.
Осмотры и профилактические испытания изоляторов. При визуальных осмотрах основное внимание обращается на целостность изоляторов, отсутствие трещин и сколов, защищенность цементных швов от влаги, окраску арматуры и отсутствие подтеков ржавчины по поверхности изоляторов.
При осмотре подвесных изоляторов проверяется состояние узлов их сочленений: не расцепились ли изоляторы в гирляндах или не порваны ли шапки изоляторов.
Визуальные осмотры штыревых изоляторов должны производиться перед началом каждой операции включения или отключения коммутационного аппарата.
Для изоляторов наиболее распространены следующие методы профилактических испытаний:
измерение сопротивления изоляции;
измерение распределения напряжения;
механические испытания.
Измерение сопротивления изоляции производится на отключенном оборудовании мегаомметром на 2500 В при положительной температуре окружающего воздуха. Для оценки результатов измерений установлено минимально допустимое значение сопротивления, которое для каждого подвесного или каждого элемента штыревого изолятора должно быть не ниже 300 МОм.
Для контроля состояния подвесной и опорно-штыревой изоляции основным считается метод измерения распределения потенциалов. Измерение производится под рабочим напряжением с помощью измерительной штанги. Суть метода заключается в том, что измеряется падение напряжения на каждом элементе изолирующей конструкции и результаты измерения сравниваются с нормальным падением напряжения, то есть с падением напряжения на всех участках при отсутствии повреждений изолятора. Нормы распределения падения напряжения табулированы.
Подвесные изоляторы из закаленного стекла электрическим испытаниям не подвергаются.
Механическим испытаниям подвергаются опорно-стержневые изоляторы типа ОНС разъединителей и отделителей. Такие изоляторы электрически непробиваемы. Их испытывают изгибающим усилием 40–60 % минимального разрушающего усилия при статическом изгибе. Механическое усилие прикладывается к изоляторам каждого полюса разъединителя или отделителя при помощи стягивающего приспособления. Продолжительность испытания 15 с.
6.4. Заземляющие устройства на ПС и в РУ
Заземляющее устройство — это совокупность электрически соединенных заземлителя и заземляющих проводников (ГОСТ 24291-90).
Заземление — это преднамеренное электрическое соединение какой-либо части электроустановки с заземляющим устройством (ГОСТ 24291-90). Заземление обеспечивает безопасность персонала и защиту от помех электронных приборов.
Защитное заземление — это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением (ГОСТ 12.1.009—76).
Зануление (защитное зануление) — это преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением (ГОСТ 12.1.009—76).
Заземлитель — это проводник (электрод) или совокупность электрически соединенных между собой проводников, находящихся в надежном соприкосновении с землей или ее эквивалентом, например, с изолированным от земли водоемом (ГОСТ 24291—90, ГОСТ 30331.1—95, ГОСТ Р 50571.1—93).
Заземляющий проводник — это проводник, соединяющий заземляемые части с заземлителем (ГОСТ 24291—90, ГОСТ 12.1.030—81).
Замыкание на землю — это случайное электрическое соединение токоведущей части непосредственно с землей, или нетоковедущими проводящими конструкциями, или предметами, не изолированными от земли (ГОСТ 12.1.009—76).
Напряжение прикосновения — это напряжение между двумя точками цепи тока, которых одновременно касается человек (ГОСТ 12.1.009—76).
На ПС заземляющие устройства применяются в качестве защитных и рабочих заземлений.
Защитное заземление служит для обеспечения защиты персонала при повреждениях изоляции оборудования и замыкания токопроводящих частей на землю. Оно выполняется так, чтобы напряжение прикосновения не превышало нормируемых значений.
Рабочее заземление обеспечивает нормальную работу электроустановок: сохранение в работе на некоторое время поврежденной линии, гашение дуговых замыканий на землю, снижение коммутационных перенапряжений и уровня изоляции силовых трансформаторов и т. д.
Различают электроустановки, работающие с изолированной нейтралью, заземленной через дугогасящие реакторы (компенсированные сети), с заземленной нейтралью через сопротивления (активные и реактивные), в частности, с глухозаземленной нейтралью (эффективно заземленные сети).
Изолированная нейтраль — это нейтраль генератора (трансформатора), не присоединенная к заземляющему устройству или присоединенная к нему через большое сопротивление (ГОСТ 12.1.030— 81).
Заземленная нейтраль — это нейтраль генератора (трансформатора), присоединенная к заземляющему устройству непосредственно или через малое сопротивление (ГОСТ 12.1.030-81).
Сети с изолированной нейтралью — это, как правило, сети напряжением 6-10 кВ, в которых ток замыкания на землю не превышает соответственно 30 и 20 А, и электрическая емкость которых мала.
При таких токах замыкания на землю в месте замыкания дуга самопогашается.
Если ток замыкания на землю превысит указанные значения, то его компенсируют с помощью дугогасящего реактора, один из выводов которого подключается к нейтрали трансформатора, а другой — к заземляющему устройству. С компенсацией емкостного тока работают сети до 35 кВ.
Сети напряжением 110 кВ и выше относятся к эффективно заземленным.
Нейтрали трансформаторов присоединяют к заземляющим устройствам наглухо или через заземляющие реакторы с малой индуктивностью так, чтобы при однофазных КЗ в сети напряжение на неповрежденных фазах относительно земли не превышало 1,4 Цф Большие значения токов замыкания на землю отключаются срабатыванием релейной защиты.
Заземление называется грозозащитным, когда к заземлителям ПС присоединяются также РВ и молниеотводы, защищающие оборудование от перенапряжений и прямых ударов молнии.
Таким образом, заземляющие устройства ПС бывают трех видов: защитное, рабочее и грозозащитное.
Заземляющие устройства ПС выполняются из заземлителей (вертикальных металлических труб) и соединенных между собой в заземляющую сетку горизонтальных полос, проложенных в земле, а также наземных заземляющих магистралей и проводников, связывающих оборудование с заземлителями. Каждый заземляющий элемент должен присоединяться к заземляющей магистрали отдельным проводником.