Kniga-Online.club
» » » » БСЭ БСЭ - Большая Советская Энциклопедия (БИ)

БСЭ БСЭ - Большая Советская Энциклопедия (БИ)

Читать бесплатно БСЭ БСЭ - Большая Советская Энциклопедия (БИ). Жанр: Энциклопедии издательство неизвестно, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

  Генераторные потенциалы возникают в мембране чувствительных нервных окончаний — рецепторов. Они внешне сходны с ВПСП — их амплитуда порядка нескольких мв и зависит от силы приложенного к рецептору раздражения (рис. 6). Когда генераторный потенциал достигает порогового (критического) значения, в соседнем участке мембраны нервного волокна возникает распространяющийся ПД. Ионный механизм генераторных потенциалов ещё недостаточно изучен.

  Наряду с перечисленными относительно быстро развивающимися Б. п., в нервных клетках, волокнах гладких мышц и некоторых растительных клетках регистрируются также очень медленные колебания мембранного потенциала неизвестной природы, причём на гребне волны деполяризации мембраны часто возникают разряды импульсов.

  Все Б. п. могут быть зарегистрированы и точно измерены только с помощью внутриклеточных микроэлектродов, позволяющих отводить разности потенциалов между внутренней и наружной сторонами мембраны клетки. При отведении колебаний Б. п. от целых нервов, мышц или мозга с помощью поверхностных электродов регистрируется лишь суммарно потенциал множества синхронно или, чаще, асинхронно работающих клеток. Так, электромиограмма представляет собой результат сложения (интерференции) ПД множества скелетных мышечных волокон; электрокардиограмма — результирующая колебаний электрических потенциалов мышечных волокон различных отделов сердца; электроэнцефалограмма — результат суммации главным образом ВПСП и ТПСП множества клеток различных слоев коры больших полушарий. Регистрация таких интерференционных электрограмм, хотя и не позволяет анализировать колебания Б. п. отдельных клеток, имеет важное значение для суждения о состоянии исследуемого органа в целом. В клинической практике электромиограмму, электрокардиограмму и электроэнцефалограмму регистрируют с помощью электродов, расположенных на коже соответствующих частей тела. Оценка данных, полученных этими методами, основана на сопоставлении изменений характера соответствующей кривой с результатами клинических, физиологических и патологоанатомических исследований.

  Лит.; Физиология человека, М., 1966; Гальвани Л. и Вольта А., Избр. работы о животном электричестве, М. — Л., 1937; Ходжкин А., Нервный импульс, пер. с англ., М., 1965; Экклс Дж., Физиология нервных клеток, пер. с англ., М., 1959; его же, Физиология синапсов, М., 1966; Катц Б., Нерв, мышца и синапс, пер. с англ., М., 1968; Ходоров Б. И., Проблема возбудимости, Л., 1969.

  Б. И. Ходоров.

Рис. 3. Изменения натриевой и калиевой проводимости мембраны нервного волокна во время генерации потенциала действия (I). Изменения проводимости пропорциональны изменениям проницаемости для Na+(II) и К+(III).

Рис. 4. Регистрация распространения потенциала действия вдоль нервного волокна. А, Б — внеклеточные электроды; р — раздражающие электроды. Вверху — отклонение луча осциллографа под влиянием волны возбуждения; 1 — волна возбуждения под электродом А; 2 — под электродом Б.

Рис. 1. Схема измерений мембранного потенциала покоя с помощью внутриклеточного стеклянного микроэлектрода (М). Второй электрод (И) помещен в омывающую клетку жидкость.

Рис. 6. Генераторные потенциалы: увеличение амплитуды при усилении раздражения рецептора (а — в). При достижении порогового значения (в) генераторный потенциал вызвал в чувствительном нервном волокне потенциал действия.

Рис. 5. Постсинаптические потенциалы: а — подпороговые ВПСП, возникающие в нервной клетке в ответ на раздражения соответствующих нервных волокон; б — ВПСП, достигший порогового значения, достаточного для возникновения ПД; в — ТПСП, вызванный раздражением тормозных нервных волокон.

Рис. 2. Потенциалы действия, зарегистрированные с помощью внутриклеточных микроэлектродов: а — гигантского аксона кальмара; б — скелетного мышечного волокна; в — волокна мышцы сердца собаки; 1 — восходящая фаза ПД; 2 — нисходящая фаза; 3 — следовая гиперполяризация (а) и следовая деполяризация (б).

Биоэлектрические явления

Биоэлектри'ческие явле'ния, см. Биоэлектрические потенциалы.

Биоэнергетика

Биоэнерге'тика, биологическая энергетика, изучает механизмы преобразования энергии в процессах жизнедеятельности организмов. Иначе говоря, Б. рассматривает явления жизнедеятельности в их энергетическом аспекте. Методы и подходы к изучаемым явлениям, применяемые в Б., — физико-химические, объекты и задачи — биологические. Т. о., Б. стоит на стыке этих наук и является частью молекулярной биологии, биофизики и биохимии.

  Началом Б. можно считать работы немецкого врача Ю. Р. Майера, открывшего закон сохранения и превращения энергии (1841) на основе исследования энергетических процессов в организме человека. Суммарное изучение процессов, являющихся источниками энергии для живых организмов (см. Дыхание, Брожение), и энергетического баланса организма, его изменений при различных условиях (покой, труд разной интенсивности, окружающая температура) долгое время являлось основным содержанием Б. (см. Основной обмен, Теплоотдача, Теплопродукция). В середине 20 в., в связи с общим направлением развития биологических наук, центральное место в Б. заняли исследования механизма преобразования энергии в живых организмах.

  Все исследования в области Б. основываются на единственно научной точке зрения, согласно которой к явлениям жизни полностью применимы законы физики и химии, а к превращениям энергии в организме — основные начала термодинамики. Однако сложность и специфичность биологических структур и реализующихся в них процессов обусловливают ряд глубоких различий между Б. и энергетикой неорганического мира, в частности технической энергетикой. Первая фундаментальная особенность Б. заключается в том, что организмы — открытые системы, функционирующие лишь в условиях постоянного обмена веществом и энергией с окружающей средой. Термодинамика таких систем существенно отличается от классической. Основополагающее для классической термодинамики понятие о равновесных состояниях заменяется представлением о стационарных состояниях; второе начало термодинамики (принцип возрастания энтропии) получает иную формулировку в виде Пригожина теоремы. Вторая важнейшая особенность Б. связана с тем, что процессы в клетках протекают в условиях отсутствия перепадов температуры, давления и объёма; в силу этого переход теплоты в работу в организме невозможен и тепловыделение представляет невозвратимую потерю энергии. Поэтому в ходе эволюции организмы выработали ряд специфических механизмов прямого преобразования одной формы свободной энергии в другую, минуя её переход в тепло. В организме лишь небольшая часть освобождающейся энергии превращается в тепло и теряется. Большая её часть преобразуется в форму свободной химической энергии особых соединений, в которых она чрезвычайно мобильна, т. е. может и при постоянной температуре превращаться в иные формы, в частности совершать работу или использоваться для биосинтеза с весьма высоким кпд, достигающим, например при работе мышцы, 30%.

  Одним из основных результатов развития Б. в последние десятилетия является установление единообразия энергетических процессов во всём живом мире — от микроорганизмов до человека. Едиными для всего растительного и животного мира оказались и те вещества, в которых энергия аккумулируется в подвижной, биологически усвояемой форме, и процессы, с помощью которых такое аккумулирование осуществляется. Такое же единообразие установлено и в процессах использования аккумулированной в этих веществах энергии. Например, структура сократительных белков и механизм механо-химического эффекта (т. е. превращения химической энергии в работу) в основном одни и те же при движении жгутиков у простейших, опускании листиков мимозы или при сложнейших движениях птиц, млекопитающих и человека. Подобное единообразие характерно не только для явлений, изучаемых Б., но и для других присущих всему живому функций: хранения и передачи наследственной информации, основных путей биосинтеза, механизма ферментативных реакций.

  Веществами, через которые реализуется энергетика организмов, являются макро-эргические соединения, характеризующиеся наличием фосфатных групп. Роль этих соединений в процессах превращения энергии в организме впервые установил, изучая мышечное сокращение, советский биохимик В. А. Энгельгардт. В дальнейшем работами многих исследователей было показано, что эти соединения участвуют в аккумуляции и трансформации энергии при всех жизненных процессах. Энергия, освобождающаяся при отщеплении фосфатных групп, может использоваться для синтеза биологически важных веществ с повышенным запасом свободной энергии и для процессов жизнедеятельности, связанных с превращением свободной химической энергии в работу (механическую, активного переноса веществ, электрическую и т.д.). Важнейшим из этих соединений веществом, играющим для всего живого мира роль почти единственного трансформатора и передатчика энергии, является аденозинтрифосфорная кислота — АТФ (см. Аденозинфосфорные кислоты), расщепляющаяся до аденозиндифосфорной кислоты (АДФ) или аденозинмонофосфорной кислоты (АМФ). Гидролиз АТФ, т. е. отщепление от неё конечной фосфатной группы, протекает по уравнению:

Перейти на страницу:

БСЭ БСЭ читать все книги автора по порядку

БСЭ БСЭ - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Большая Советская Энциклопедия (БИ) отзывы

Отзывы читателей о книге Большая Советская Энциклопедия (БИ), автор: БСЭ БСЭ. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*