БСЭ БСЭ - Большая Советская Энциклопедия (ГИ)
В 60-х гг. наметилась тенденция к снижению доли ГЭС в общем мировом производстве электроэнергии и всё большему использованию ГЭС для покрытия пиковых нагрузок. К 1970 всеми ГЭС мира производилось около 1000 млрд. квт/ч электроэнергии в год, причём начиная с 1960 доля ГЭС в мировом производстве снижалась в среднем за год примерно на 0,7%. Особенно быстро снижается доля ГЭС в общем производстве электроэнергии в ранее традиционно считавшихся «гидроэнергетическими» странах (Швейцария, Австрия, Финляндия, Япония, Канада, отчасти Франция), т.к. их экономический гидроэнергетический потенциал практически исчерпан.
Табл. 2. —Крупнейшие ГЭС мира
Наименование ГЭС Мощность ГЭС *, Мвт Год начала эксплуатации Действующие Красноярская, СССР.... 5000 (6000) 1967 Братская, СССР 4100 (4600) 1961 Волжская им. 22-го съезда КПСС, СССР 2530 1958 Волжская им. В. И. Ленина, СССР 2300 1955 Джон-Дей, США 2160 (2700) 1968 Гранд-Кули, США 1974 (1711) 1941 Роберт-Мозес (Ниагара), США 1950 1961 Св. Лаврентия, Канада-США 1824 1958 Высотная Асуанская, АРЕ 1750 (2100) 1967 Боарнуа, Канада 1639 1948 Строятся Саяно-Шушенская, СССР 6300 - Черчилл-Фолс, Канада 4500 - Усть-Илимская, СССР 4300 - Илья-Солтейра, Бразилия 3200 - Нурекская, СССР 2700 - Портидж-Маунтин, Канада 2300 - Железные Ворота, Румыния—Югославия 2100 - Тарбалла, Пакистан 2000 - Мика, Канада 2000 -* Мощность ГЭС приведена по состоянию на 1 января 1969; в скобках указана проектная мощность.
Несмотря на снижение доли ГЭС в общей выработке, абсолютные значения производства электроэнергии и мощности ГЭС непрерывно растут вследствие строительства новых крупных электростанций. В 1969 в мире насчитывалось свыше 50 действующих и строящихся ГЭС единичной мощностью 1000 Мвт и выше, причём 16 из них — в Советском Союзе.
Дальнейшее развитие гидроэнергетического строительства в СССР предусматривает сооружение каскадов ГЭС с комплексным использованием водных ресурсов в целях удовлетворения нужд совместно энергетики, водного транспорта, водоснабжения, ирригации, рыбного хозяйства и пр. Примером могут служить Днепровский, Волжско-Камский, Ангаро-Енисейский, Севанский и др. каскады ГЭС.
Крупнейшим районом гидроэнергостроительства СССР до 50-х гг. 20 в. традиционно была Европейская часть территории Союза, на долю которой приходилось около 65% электроэнергии, вырабатываемой всеми ГЭС СССР. Для современного гидроэнергостроительства характерно: продолжение строительства и совершенствование низко- и средненапорных ГЭС на рр. Волге, Каме, Днепре, Даугаве и др., строительство крупных высоконапорных ГЭС в труднодоступных районах Кавказа, Средней Азии, Восточной Сибири и т.п., строительство средних и крупных деривационных ГЭС на горных реках с большими уклонами и использованием переброски стока в соседние бассейны, но главное — строительство мощных ГЭС на крупных реках Сибири и Дальнего Востока — Енисее, Ангаре, Лене и др. ГЭС, сооружаемые в богатых гидроэнергоресурсами районах Сибири и Дальнего Востока, вместе с тепловыми электростанциями, работающими на местном органическом топливе (природный газ, уголь, нефть), станут основной энергетической базой для снабжения дешёвой электроэнергией развивающейся промышленности Сибири, Средней Азии и Европейской части СССР (см. Единая электроэнергетическая система).
Лит.: Аргунов П. П., Гидроэлектростанции, К., 1960; Денисов И. П., Основы использования водной энергии, М. — Л., 1964; Энергетические ресурсы СССР, [т. 2] — Гидроэнергетические ресурсы, М., 1967; Никитин Б. И., Энергетика гидростанций, М., 1968; Электрификация СССР. 1917—1967, под ред. П. С. Непорожнего, М., 1967; Труды Гидропроекта. Сборник 16, М., 1969; Гидроэнергетика СССР. Статистический обзор, М., 1969.
В. А. Прокудин.
Рис. 2. Схема концентрации падения реки деривацией (подводящей): ВБ — верхний бьеф; НБ — нижний бьеф; Нб — напор брутто.
Рис. 2. Схема гидроузла Нурекской ГЭС на р. Вахш: 1 — плотина; 2 — водоприемник ГЭС; 3 — напорные водоподводящие туннели; 4 — уравнительные резервуары; 5 — турбинные водопроводы; 6 — здание ГЭС; 7 — открытое распределительное устройство; 8 — открытый водосброс с отводящим каналом; 9 — строительные туннели; 10 — верховая и низовая перемычки.
Рис. 1. Схема концентрации падения реки плотиной: ВБ — верхний бьеф; НБ — нижний бьеф; Нб — напор брутто.
Рис. 4. Разрез здания Волжской ГЭС имени 22-го съезда КПСС: 1 — водоприёмник; 2 — камера турбины; 3 — гидротурбина; 4 — гидрогенератор; 5 — отсасывающая труба; 6 — распределительные устройства (электрические); 7 — трансформатор; 8 — портальные краны; 9 — кран машинного зала; 10 — донный водосброс; НПУ — нормальный подпорный уровень, м; УНБ — уровень нижнего бьефа, м.
Рис. 5. План Саянского гидроузла.
Рис. 3. Смешанная схема концентрации падения реки плотиной и деривацией: ВБ — верхний бьеф; НБ — нижний бьеф; Нб — напор брутто.
Гидроэлектрические ванны
Гидроэлектри'ческие ва'нны, одновременное воздействие на организм с лечебной целью общей или местной ванны и пропускаемого через воду гальванического тока. Под влиянием Г. в. в организме происходят расширение кровеносных сосудов и ускорение кровотока в них; Г. в. обладают общеуспокаивающим и болеутоляющим действием. В современной медицинской практике из-за невозможности измерения тока в теле пациента Г. в. в СССР не применяют.
В. Г. Ясногородский.
Гидроэнергетика
Гидроэнерге'тика, раздел энергетики, связанный с использованием потенциальной энергии водных ресурсов.
Человек ещё в глубокой древности обратил внимание на реки как на доступный источник энергии. Для использования этой энергии научились строить водяные колёса, которые вращала вода; этими колёсами приводились в движение мельничные постава и др. установки. Водяная мельница является примером древнейшей гидроэнергетические установки, сохранившейся во многих местах до нашего времени почти в первобытном виде. До изобретения паровой машины водная энергия была основной двигательной силой на производстве. По мере совершенствования водяных колёс увеличивалась мощность гидравлических установок, приводящих в движение станки, молоты, воздуходувные устройства и т. п. Об использовании водной энергии на территории СССР свидетельствуют материалы археологических исследований, в частности проведённых на территории Армении и в бассейне р. Амударья. В 17 в. в России единственной энергетической базой развивавшегося мануфактурного производства были водяные колёса. Замечательные успехи в строительстве вододействующих или гидросиловых установок в России были достигнуты в 18 в. в горнорудной промышленности на Урале и Алтае. Гидросиловые установки были неотъемлемой частью металлургического, лесопильного, бумажного, ткацкого и др. производств. К концу 18 в. в России было уже около 3000 мануфактур, использовавших водную энергию рек. Были созданы уникальные для того времени гидросиловые установки. Например, в 1765 водный мастер К. Д. Фролов соорудил на р. Корбалиха (Алтай) гидросиловую установку, в которой вода подводилась к рабочему колесу по специальному каналу. Образовавшийся перепад между каналом и рекой использовался в установке для вращения водяного колеса, которое при помощи системы остроумно осуществленных передач приводило в движение группу машин, в том числе предложенный К. Д. Фроловым внутризаводской транспорт в виде системы вагонеток. В 1787 К. Д. Фролов завершил строительство деривационной четырехступенчатой подземной гидросиловой установки на р. Змеевка, не имевшей себе равных как по схеме, так и по масштабу и уровню технического исполнения. Самые мощные водяные колёса диаметром 9,5 м, шир. 7,5 м были установлены в конце 18 в. в России на р. Нарова для Кренгольмской мануфактуры. При напоре 5 м они развивали мощность до 500 л. с. С появлением паровой машины примитивные вододействующие установки начали утрачивать своё значение. Для того чтобы конкурировать с паровой машиной, необходимо было иметь более совершенные двигатели, чем громоздкие и сравнительно маломощные водяные колёса. В 1-й половине 19 в. была изобретена гидротурбина, открывшая новые возможности перед Г. С изобретением электрической машины и способа передачи электроэнергии на значительные расстояния Г. приобрела новое значение уже как направление электроэнергетики; началось освоение водной энергии путём преобразования её в электрическую на гидроэлектрических станциях (ГЭС).