Kniga-Online.club
» » » » БСЭ БСЭ - Большая Советская Энциклопедия (НЕ)

БСЭ БСЭ - Большая Советская Энциклопедия (НЕ)

Читать бесплатно БСЭ БСЭ - Большая Советская Энциклопедия (НЕ). Жанр: Энциклопедии издательство неизвестно, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

  Видимому суточному перемещению звёзд, являющемуся отображением действительного вращения Земли вокруг оси, соответствует вращение Н. с. вокруг оси мира с периодом, равным одним звёздным суткам. Вследствие вращения Н. с. все изображения светил описывают в пространстве параллельные экватору окружности, называются суточными параллелями светил. В зависимости от расположения суточных параллелей относительно горизонта светила подразделяются на незаходящие (суточные параллели располагаются целиком над горизонтом), невосходящие (суточные параллели целиком под горизонтом), восходящие и заходящие (суточные параллели пересекаются горизонтом). Границами этих групп светил являются параллели KN и SM', касающиеся горизонта в точках N и S (рис. 1 ). Так как видимость светил определяется положением горизонта, плоскость которого перпендикулярна отвесной линии, то условия видимости небесных светил различны для мест на поверхности Земли с различной географической широтой j. Это явление, известное уже в древности, служило одним из доказательств шарообразности Земли. На экваторе (j = 0°) ось мира PP' располагается в плоскости горизонта и совпадает с полуденной линией NS. Суточные параллели (KK', MM' ) всех светил пересекают плоскость горизонта под прямыми углами. Здесь все светила являются восходящими и заходящими (рис. 3 ). По мере перемещения наблюдателя по земной поверхности от экватора к полюсу наклон оси мира к горизонту увеличивается. Всё большее число светил становится незаходящими и невосходящими. На полюсе (j = 90°) ось мира совпадает с отвесной линией, а плоскость экватора — с плоскостью горизонта. Здесь все светила разделяются только на незаходящие и невосходящие, так каких суточные параллели (KK', MM' ) располагаются в плоскостях, параллельных горизонту (рис. 4 ).

  Лит.: Блажко С. Н., Курс сферической астрономии, М. — Л., 1948; Казаков С. А., Курс сферической астрономии, 2 изд., М. — Л., 1940.

  В. П. Щеглов.

Рис. 4. Изображение небесной сферы для полюса (j = 90°).

Рис. 2. Небесная сфера: ¡A A' — небесный экватор; ¡E = E' — эклиптика; ¡ и  — точки весеннего и осеннего равноденствия; Е и E' — точки летнего и зимнего солнцестояния; Р и P' — Северный и Южный полюсы мира; П и П' — Северный и Южный полюсы эклиптики.

Рис. 3. Изображение небесной сферы для экватора (j = 0°).

Рис. 1. Небесная сфера: Z — зенит; Z' — надир; NESW — математический горизонт; N, Е, S, W — точки севера, востока, юга и запада; Р и P' — Северный и Южный полюсы мира; AWA'E — небесный экватор; j — географическая широта.

Небесные координаты

Небе'сные координа'ты, числа, с помощью которых определяют положение светил и вспомогательных точек на небесной сфере . В астрономии употребляют различные системы Н. к. Каждая из них по существу представляет собой систему полярных координат на сфере с соответствующим образом выбранным полюсом. Систему Н. к. задают большим кругом небесной сферы (или его полюсом, отстоящим на 90° от любой точки этого круга) с указанием на нём начальной точки отсчёта одной из координат. В зависимости от выбора этого круга системы Н. к. называлась горизонтальной, экваториальной, эклиптической и галактической. Н. к. употреблялись уже в глубокой древности. Описание некоторых систем содержится в трудах древнегреческого геометра Евклида (около 300 до н. э.). Опубликованный в «Альмагесте» Птолемея звёздный каталог Гиппарха содержит положения 1022 звёзд в эклиптической системе Н. к.

  В горизонтальной системе основным кругом служит математический, или истинный, горизонт NESW (рис. 1 ), полюсом — зенит Z места наблюдения. Для определения положения светила s проводят через него и Z большой круг, называется кругом высоты, или вертикалом, данного светила. Дуга Z s вертикала от зенита до светила называется его зенитным расстоянием z и является первой координатой; z может иметь любое значение от 0° (для зенита Z ) до 180° (для надира Z' ). Вместо z пользуются также высотой светила h, равной дуге круга высоты от горизонта до светила. Высота отсчитывается в обе стороны от горизонта от 0° до 90° и считается положительной, если светило находится над горизонтом, и отрицательной — если светило под горизонтом. При таком условии всегда справедливо соотношение z + h = 90°. Вторая координата — азимут А — есть дуга горизонта, отсчитываемая от точки севера N по направлению к востоку до вертикала данного светила (в астрометрии азимут часто отсчитывают от точки юга S к западу). Эта дуга NESM измеряет сферический угол при Z между небесным меридианом и вертикалом светила, равный двугранному углу между их плоскостями. Азимут может иметь любое значение от 0° до 360°. Существенной особенностью горизонтальной системы является её зависимость от места наблюдения, т.к. зенит и математический горизонт определяются направлением отвесной линии, различным в разных точках земной поверхности. Вследствие этого координаты даже весьма удалённого светила, наблюдаемого одновременно из разных мест земной поверхности, различны. В процессе движения по суточной параллели каждое светило дважды пересекает меридиан; прохождения его через меридиан называются кульминациями. В верхней кульминации z бывает наименьшим, в нижней — наибольшим. В этих пределах z изменяется в течение суток. Для светил, имеющих верхнюю кульминацию к югу от Z , азимут А в течение суток меняется от 0° до 360°. У светил же, кульминирующих между полюсом мира Р и Z, азимут изменяется в некоторых пределах, определяемых широтой места наблюдения и угловым расстоянием светила от полюса мира.

  В первой экваториальной системе основным кругом служит небесный экватор Q ¡ Q’ (рис. 2 ), полюсом — полюс мира Р , видимый из данного места. Для определения положения светила s проводят через него и Р большой круг, называемый часовым кругом, или кругом склонений. Дуга этого круга от экватора до светила есть первая координата — склонение светила d. Склонение отсчитывается от экватора в обе стороны от 0° до 90°, причём для светил Южном полушария d принимается отрицательным. Иногда вместо склонения берётся полярное расстояние р, равное дуге Р s круга склонений от Северного полюса до светила, которая может иметь любое значение от 0° до 180°, так что всегда справедливо соотношение: р + d = 90°. Вторая координата — часовой угол t — есть дуга экватора QM, отсчитываемая от расположенной над горизонтом точки Q пересечения его с небесным меридианом в направлении вращения небесной сферы до часового круга данного светила. Эта дуга соответствует сферическому углу при Р между направленной к точке юга дугой меридиана и часовым кругом светила. Часовой угол неподвижного светила изменяется в течение суток от 0° до 360°, тогда как склонение остаётся постоянным. Так как изменение часового угла пропорционально времени, то он служит мерой времени (см. Время ), откуда и происходит его название. Часовой угол почти всегда выражают в часах, минутах и секундах времени так, что 24ч соответствуют 360°, 1ч соответствует 15° и т.д. Обе описанные системы — горизонтальная и первая экваториальная — называемые местными, так как координаты в них зависят от места наблюдения.

  Вторая экваториальная система отличается от вышеописанной лишь второй координатой. Вместо часового угла в ней употребляется прямое восхождение светила a дуга ¡ М небесного экватора, отсчитываемая от точки весеннего равноденствия ¡ в направлении, обратном вращению небесной сферы, до круга склонений данного светила (рис. 2 ). Она измеряет сферический угол при Р между кругами склонений, проходящими через точку ¡ и данное светило. Обычно ее выражается в часах, минутах и секундах времени и может иметь любое значение от 0ч до 24ч . Так как точка ¡ участвует во вращении небесной сферы, то обе координаты достаточно удалённого и неподвижного светила в этой системе не зависят от места наблюдения.

  В эклиптической системе основным кругом служит эклиптика Е ¡ E' (рис. 3 ), полюсом — полюс эклиптики П. Для определения положения светила s проводят через него и точку П большой круг, называемый кругом широты данного светила. Его дуга от эклиптики до светила называется эклиптической, небесной или астрономической, широтой b, является первой координатой. Отсчитывается b от эклиптики в направлении к её Северному и Южному полюсам; в последнем случае её считают отрицательной. Вторая координата — эклиптическая, небесная или астрономическая, долгота l — дуга ¡ М эклиптики от точки ¡ до круга широты данного светила, отсчитываемая в направлении годичного движения Солнца. Она может иметь любое значение от 0° до 360°. Координаты b и l точек, связанных с небесной сферой, не меняются в течение суток и не зависят от места наблюдений.

Перейти на страницу:

БСЭ БСЭ читать все книги автора по порядку

БСЭ БСЭ - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Большая Советская Энциклопедия (НЕ) отзывы

Отзывы читателей о книге Большая Советская Энциклопедия (НЕ), автор: БСЭ БСЭ. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*