БСЭ БСЭ - Большая Советская Энциклопедия (ЭК)
Эксгумация
Эксгума'ция (позднелат. exhumatio, от лат. ех — из и humus — земля, почва), извлечение трупа из места захоронения. По советскому праву Э. производится по постановлению следователя с указанием её цели: осмотра (в т. ч. повторного) захороненного трупа, установления личности умершего путём предъявления его трупа для опознания или экспертного отождествления, а также для проведения экспертизы — первичной, дополнительной, повторной (судебно-медицинской, судебно-биологической, судебно-токсикологической). Наиболее частая цель Э. — исследование трупа, который по обстоятельствам смерти подлежал экспертизе судебно-медицинской , но был захоронен без вскрытия. При Э. присутствуют понятые , судебно-медицинский эксперт , а если требуется, — и иной специалист (например, врач санитарной инспекции). Об Э. следователь составляет протокол, к которому прилагаются фотоснимки (могилы, надгробия, извлечённого гроба, трупа).
Экседра
Эксе'дра (греч. exédra), в античных общественных и богатых жилых зданиях полукруглая глубокая ниша, обычно с расположенными вдоль стены сиденьями, иногда полукруглое полуоткрытое сооружение. Служила местом собраний, бесед.
Эксекий
Эксе'кий (Exékías), древнегреческий гончар и вазописец 3-й четверти 6 в. до н. э. Среди произв. Э., крупнейшего представителя развитого чёрнофигурного стиля,— амфоры с росписями «Ахилл в борьбе с Пентесилеей. Мемнон с негром» (см. илл. ), «Геракл в борьбе со львом» (Античное собрание, Берлин). «Аякс с телом Ахилла» (Музей античного малого искусства, Мюнхен), килик «Нике» (Лувр, Париж) и другие сосуды.
Эксекий. «Мемнон с негром». Фрагмент росписи амфоры. 3-я четв. 6 в. до н. э. Британский музей. Лондон.
Эксекий. «Дионис в ладье». Роспись килика. 3-я четверть 6 в. до н. э. Музей античного малого искусства. Мюнхен.
Эксергия
Эксе'ргия (от греч. ex — приставка, обозначающая здесь высокую степень, и érgon — работа), работоспособность, термин, применяемый в термодинамике для обозначения максимальной работы, которую может совершить система при переходе из данного состояния в равновесие с окружающей средой. Работа, совершаемая системой в каком-либо термодинамическом процессе, оказывается максимальной лишь в том случае, если осуществляемый процесс — равновесный.
Эксетер
Э'ксетер (Exeter), город (административный округ) на Ю.-З. Великобритании. Порт на р. Экс. Административный центр графства Девоншир. 93,3 тыс. жит. (1976). Машиностроение, пищевая промышленность. Университет. Город возник на месте кельтского поселения. От древнеримской эпохи сохранились элементы регулярной планировки, но в целом в исторической части города (за остатками средневековых стен) преобладает беспорядочная застройка. Памятники архитектуры — руины позднероманского замка на холме Рауджмонт (основан в 1068), романо-готическая ратуша (12 в., перестройки 14—16 вв.), готический собор («украшенного стиля», перестроен в 1275—1375 из романской церкви). Мемориальный музей Альберта (собрание керамики и бронзы).
Лит.: Sharp Т., Exeter phoenix, L., 1946.
Эксетер. Собор. Западный фасад. 1346—75.
Эксикаторы
Эксика'торы, см. в ст. Посуда химическая лабораторная .
Экситон
Эксито'н (от лат. excito — возбуждаю), квазичастица , представляющая собой электронное возбуждение в диэлектрике или полупроводнике, мигрирующее по кристаллу и не связанное с переносом электрического заряда и массы. Представление об Э. было введено в 1931 Я. И. Френкелем . Он объяснял отсутствие фотопроводимости у диэлектриков при поглощении света тем, что поглощённая энергия расходуется не на создание носителей тока, а на образование Э. В молекулярных кристаллах Э. представляет собой элементарное возбуждение электронной системы отдельной молекулы, которое благодаря межмолекулярным взаимодействиям распространяется по кристаллу в виде волны (экситон Френкеля). Э. Френкеля проявляются в спектрах поглощения и излучения молекулярных кристаллов (см. Спектроскопия кристаллов ). Если в элементарной ячейке молекулярного кристалла содержится несколько молекул, то межмолекулярное взаимодействие приводит к расщеплению экситонных линий. Этот эффект, называемый давыдовским расщеплением, связан с возможностью перехода Э. Френкеля из одной группы молекул в другую в пределах элементарной ячейки. Давыдовское расщепление экспериментально обнаружено в ряде молекулярных кристаллов (нафталине, антрацене, бензоле и др.).
В полупроводниках Э. представляет собой водородоподобное связанное состояние электрона проводимости и дырки (экситон Ванье—Мотта). Энергии связи E * и эффективные радиусы a * Э. Ванье—Мотта можно оценить по формулам Н. Бора для атома водорода, учитывая, что эффективные массы электронов проводимости m э и дырок m д отличаются от массы свободного электрона mo и что кулоновское взаимодействие электрона и дырки в кристалле ослаблено диэлектрической проницаемостью среды e:
E*= эв; (1)
а * = см .
Здесь , ¾ Планка постоянная , е — заряд электрона. Формулы (1) не учитывают влияния сложной зонной структуры кристалла, взаимодействия электронов и дырок с фононами . Однако учёт этих факторов не меняет порядок величин E * и а *. Для Ge, Si и полупроводников типов AIII BV и AII BVI m* ~ 0,1 т о , e ~ 10, что приводит к значениям E * ~ 10¾2 эв , и а * ~ 10¾6 см. Т. о., энергии связи Э. Ванье — Мотта во много раз меньше, чем энергия связи электрона с протоном в атоме водорода, а радиусы Э. во много раз больше межатомных расстояний в кристалле. Большие значения а* означают, что Э. в полупроводниковых кристаллах — макроскопическое образование, причём структура кристалла определяет лишь параметры m* и E *. Поэтому Э. Ванье — Мотта можно рассматривать как квазиатом, движущийся в вакууме. Искажения структуры кристалла, вносимые Э. или даже большим числом Э., пренебрежимо мало. В кристаллах галогенидов щелочных металлов и инертных газов E * ~ 0,1—1 эв , а* ~ 10¾7 — 10¾8 см и образование Э. сопровождается деформацией элементарной ячейки.
Э. Ванье—Мотта отчётливо проявляются в спектрах поглощения полупроводников в виде узких линий, сдвинутых на величину E * ниже края оптического поглощения. Водородоподобный спектр Э. Ванье — Мотта впервые наблюдался в спектре поглощения Cu2 O, в дальнейшем в др. полупроводниках. Э. проявляются также в спектрах люминесценции , в фотопроводимости, в Штарка эффекте и Зеемана эффекте . Время жизни Э. невелико: электрон и дырка, составляющие Э., могут рекомбинировать с излучением фотона, например в Ge время жизни Э. порядка 10¾5 сек. Э. может распадаться при столкновении с дефектами решётки.
При взаимодействии Э. с фотонами, имеющими частоты w = , возникают новые квазичастицы — смешанные экситон-фотонные состояния, называемые поляритонами. Свойства поляритонов (например, их закон дисперсии) существенно отличаются от свойств как Э., так и фотонов. Поляритоны играют существ. роль в процессах переноса энергии электронного возбуждения в кристалле, они обусловливают особенности оптических спектров полупроводников в области экситонных полос и др.
При малых концентрациях Э. ведут себя в кристалле подобно газу квазичастиц. При больших концентрациях становится существенным их взаимодействие. Возможно образование связанного состояния двух Э. — экситонной молекулы (биэкситона). Однако, в отличие от молекулы водорода, энергия диссоциации биэкситона значительно меньше, чем его энергия связи (эффективные массы электронов и дырок в полупроводниках одного порядка).
При повышении концентрации Э. расстояние между ними может стать порядка их радиуса, что приводит к разрушению Э. Это может сопровождаться возникновением «капель» электронно-дырочной плазмы (см. Электронно-дырочная жидкость ). Образование электронно-дырочных капель в таких полупроводниках, как Ge и Si, сказывается в появлении новой широкой линии люминесценции, сдвинутой в сторону уменьшения энергии фотона. Электронно-дырочные капли обладают рядом интересных свойств: высокой плотностью электронов и дырок при малой (средней по объёму) концентрации, большой подвижностью в неоднородных полях и т.п.