Владислав Пристинский - 100 знаменитых изобретений
Ученик Галилея Э. Торричелли перенял у своего учителя искусство шлифовки линз. Кроме изготовления зрительных труб Торричелли конструировал простые микроскопы, состоявшие из одной крошечной линзы, которую он получал из одной капли стекла, расплавляя над огнем стеклянную палочку.
В XVII в. были популярны простейшие микроскопы, состоявшие из лупы – двояковыпуклой линзы, закрепленной на подставке. На подставке укреплялся и предметный столик, на котором размещался рассматриваемый объект. Внизу под столиком находилось зеркало плоской или выпуклой формы, которое отражало солнечные лучи на предмет и подсвечивало его снизу. Для улучшения изображения лупа перемещалась относительно предметного столика при помощи винта.
В 1665 г. англичанин Р. Гук при помощи микроскопа, в котором использовались маленькие стеклянные шарики, открыл клеточное строение животных и растительных тканей.
Современник Гука голландец А. ван Левенгук изготовлял микроскопы, состоявшие из небольших двояковыпуклых линз. Они давали 150–300-кратное увеличение. При помощи своих микроскопов Левенгук исследовал строение живых организмов. В частности, он открыл движение крови в кровеносных сосудах и красные кровяные тельца, сперматозоиды, описал строение мышц, чешуйки кожи и многое другое.
Левенгук открыл новый мир – мир микроорганизмов. Он описал множество видов инфузорий и бактерий.
Много открытий в области микроскопической анатомии сделал голландский биолог Я. Сваммердам. Наиболее подробно он исследовал анатомию насекомых. В 30-е гг. XVIII в. он выпустил богато иллюстрированный труд под названием «Библия природы».
Методы расчета оптических узлов микроскопа разработал швейцарец Л. Эйлер, работавший в России.
Наиболее распространенная схема микроскопа следующая: исследуемый предмет помещается на предметном столике. Над ним располагается устройство, в котором смонтированы линзы объектива и тубус – трубка с окуляром. Наблюдаемый предмет освещается с помощью лампы или солнечного света, наклонного зеркала и линзы. Диафрагмы, установленные между источником света и предметом, ограничивают световой поток и уменьшают в нем долю рассеянного света. Между диафрагмами установлено зеркало, изменяющее направление светового потока на 90°. Конденсор концентрирует на предмете пучок света. Объектив собирает лучи, рассеянные предметом и образует увеличенное изображение предмета, рассматриваемое при помощи окуляра. Окуляр работает как лупа, давая дополнительное увеличение. Пределы увеличения микроскопа от 44 до 1500 раз.
В 1827 г. Дж. Амичи применил в микроскопе иммерсионный объектив. В нем пространство между предметом и объективом заполнено иммерсионной жидкостью. В качестве такой жидкости применяются различные масла (кедровое или минеральное), вода или водный раствор глицерина и др. Такие объективы позволяют увеличить разрешающую способность микроскопа, улучшить контрастность изображения.
В 1850 г. английский оптик Г. Сорби создал первый микроскоп для наблюдения объектов в поляризованном свете. Такие аппараты применяются для изучения кристаллов, образцов металлов, животных и растительных тканей.
Начало интерференционной микроскопии было положено в 1893 г. англичанином Дж. Сирксом. Ее суть в том, что каждый луч, входя в микроскоп, раздваивается. Один из полученных лучей направляется на наблюдаемую частицу, второй – мимо нее. В окулярной части оба луча вновь соединяются, и между ними возникает интерференция. Интерференционная микроскопия позволяет изучать живые ткани и клетки.
В XX в. появились различные виды микроскопов, имеющие разное назначение, конструкцию, позволяющие изучать объекты в широких диапазонах спектра.
Так, в инвертированных микроскопах объектив располагается под наблюдаемым объектом, а конденсор – сверху. Направление хода лучей изменяется при помощи системы зеркал, и в глаз наблюдателя они попадают, как обычно – снизу вверх. Эти микроскопы предназначены для изучения громоздких предметов, которые трудно расположить на предметных столиках обычных микроскопов. С их помощью исследуют культуры тканей, химические реакции, определяют точки плавления материалов. Наиболее широко такие микроскопы применяются в металлографии для наблюдения за поверхностями металлов, сплавов и минералов. Инвертированные микроскопы могут оснащаться специальными устройствами для микрофотографирования и микрокиносъемки.
На люминесцентных микроскопах устанавливаются сменные светофильтры, позволяющие выделить в излучении осветителя ту часть спектра, которая вызывает люминесценцию исследуемого объекта. Специальные фильтры пропускают от объекта только свет люминесценции. Источниками света в таких микроскопах служат ртутные лампы сверхвысокого давления, излучающие ультрафиолетовые лучи и лучи коротковолнового диапазона видимого спектра.
Ультрафиолетовые и инфракрасные микроскопы служат для исследования областей спектра, недоступного человеческому глазу. Оптические схемы аналогичны схемам обычных микроскопов. Линзы этих микроскопов изготовлены из материалов, прозрачных для ультрафиолетовых (кварц, флюорит) и инфракрасных (кремний, германий) лучей. Они снабжены фотокамерами, фиксирующими невидимое изображение и электронно-оптическими преобразователями, превращающими невидимое изображение в видимое.
Стереомикроскоп обеспечивает объемное изображение объекта. Это собственно два микроскопа, выполненные в единой конструкции таким образом, что правый и левый глаза наблюдают объект под разными углами. Они нашли применение в микрохирургии и сборке миниатюрных устройств.
Микроскопы сравнения представляют собой два обычных объединенных микроскопа с единой окулярной системой. В такие микроскопы можно наблюдать сразу два объекта, сравнивая их визуальные характеристики.
В телевизионных микроскопах изображение препарата преобразуется в электрические сигналы, воспроизводящие это изображение на экране электронно-лучевой трубки. В этих микроскопах можно изменять яркость и контраст изображения. С их помощью можно изучать на безопасном расстоянии объекты, опасные для рассмотрения с близкого расстояния, например радиоактивные вещества.
Лучшие оптические микроскопы позволяют увеличить наблюдаемые объекты примерно в 2000 раз. Дальнейшее увеличение невозможно, поскольку свет огибает освещаемый объект, и если его размеры меньше, чем длина волны, такой объект становится невидимым. Минимальный размер предмета, который можно разглядеть в оптический микроскоп – 0,2–0,3 микрометра.
В 1834 г. У. Гамильтон установил, что существует аналогия между прохождением световых лучей в оптически неоднородных средах и траекториями частиц в силовых полях. Возможность создания электронного микроскопа появилась в 1924 г. после того, как Л. Де Бройль выдвинул гипотезу, что всем без исключения видам материи – электронам, протонам, атомам и др. присущ корпускулярно-волновой дуализм, то есть они обладают свойствами как частицы, так и волны. Технические предпосылки для создания такого микроскопа появились благодаря исследованиям немецкого физика X. Буша. Он исследовал фокусирующие свойства осесимметричных полей и в 1928 г. разработал магнитную электронную линзу.
В 1928 г. М. Кнолль и М. Руска приступили к созданию первого магнитного просвечивающего микроскопа. Три года спустя они получили изображение объекта, сформированного при помощи пучков электронов. В 1938 г. М. фон Арденне в Германии и в 1942 г. В. К. Зворыкин в США построили первые растровые электронные микроскопы, работающие по принципу сканирования. В них тонкий электронный пучок (зонд) последовательно перемещался по объекту от точки к точке.
В электронном микроскопе, в отличие от оптического, вместо световых лучей используются электроны, а вместо стеклянных линз – электромагнитные катушки или электронные линзы. Источником электронов для освещения объекта является электронная «пушка». В ней источником электронов является металлический катод. Затем электроны собираются в пучок с помощью фокусирующего электрода и под действием сильного электрического поля, действующего между катодом и анодом, набирают энергию. Для создания поля к электродам прикладывается напряжение до 100 киловольт и более. Напряжение регулируется ступенеобразно и отличается большой стабильностью – за 1–3 минуты оно изменяется не более чем на 1–2 миллионные доли от исходного значения.
Выходя из электронной «пушки», пучок электронов с помощью конденсорной линзы направляется на объект, рассеивается на нем и фокусируется объектной линзой, которая создает промежуточное изображение объекта. Проекционная линза вновь собирает электроны и создает второе, еще более увеличенное изображение на люминесцентном экране. На нем под действием ударяющихся в него электронов возникает светящаяся картина объекта. Если поместить под экраном фотопластинку, то можно сфотографировать это изображение.