БСЭ БСЭ - Большая Советская Энциклопедия (СЛ)
Сложная система
Сло'жная систе'ма, составной объект, части которого можно рассматривать как системы , закономерно объединённые в единое целое в соответствии с определенными принципами или связанные между собой заданными отношениями. Понятием С. с. пользуются в системотехнике , системном анализе , операций исследовании и при системном подходе в различных областях науки, техники и народный хозяйства. С. с. можно расчленить (не обязательно единственным образом) на конечное число частей, называемое подсистемами; каждую такую подсистему (высшего уровня) можно в свою очередь расчленить на конечное число более мелких подсистем и т. д., вплоть до получения подсистем первого уровня, т. н. элементов С. с., которые либо объективно не подлежат расчленению на части, либо относительно их дальнейшей неделимости имеется соответствующая договорённость. Подсистема, т. о., с одной стороны, сама является С. с. из нескольких элементов (подсистем низшего уровня), а с другой стороны — элементом системы старшего уровня.
В каждый момент времени элемент С. с. находится в одном из возможных состояний; из одного состояния в другое он переходит под действием внешних и внутренних факторов. Динамика поведения элемента С. с. проявляется в том, что состояние элемента и его выходные сигналы (воздействия на внешнюю среду и др. элементы С. с.) в каждый момент времени определяются предыдущими состояниями и входными сигналами (воздействиями со стороны внешней среды и других элементов С. с.), поступившими как в данный момент времени, так и ранее. Под внешней средой понимается совокупность объектов, не являющихся элементами данной С. с., но взаимодействие с которыми учитывают при её изучении. Элементы С. с. функционируют не изолированно друг от друга, а во взаимодействии: свойства одного элемента в общем случае зависят от условий, определяемых поведением других элементов; свойства С. с. в целом определяются не только свойствами элементов, но и характером взаимодействия между ними (две С. с., состоящие из попарно одинаковых элементов, которые, однако, взаимодействуют между собой различным образом, рассматривают как две различные системы).
Типичные примеры С. с.: в области организации производства и технологии — производственный комплекс предприятия как совокупность производственных комплексов цехов и участков, каждый из которых содержит некоторое число технологических линий; последние состоят из станков и агрегатов, рассматриваемых обычно как элементы С. с.; в области автоматизированного управления — процесс управления предприятием или отраслью народный хозяйства как совокупность процессов сбора данных о состоянии управляемых объектов, формирования потоков информации, её накопления, передачи и обработки, синтеза управляющих воздействий; в области вычислительной техники — математическое обеспечение современных вычислительных комплексов, включающее операционную систему для управления последовательностью вычислений и координации работы всех устройств комплекса, библиотеку стандартных программ, а также средства автоматизации программирования (алгоритмические языки, трансляторы, интерпретирующие системы), средства обслуживания и контроля вычислений; каждую из упомянутых частей можно представить в виде системы с иерархической многоуровневой структурой, состоящей из отдельных взаимосвязанных программ, процедур, операторов и т. д.; в области городского хозяйства — регулирование уличного движения в крупном городе или районе с большими потоками автомобилей на автомагистралях и очередями на перекрёстках средствами автоматизированного управления движением с учётом реальных ситуаций и пропускной способности улиц; системы автоматической городской и междугородной телефонной связи; другие экономические, организационные, биологические и т. п. объекты и процессы.
Методы исследования С. с. Основной метод исследования — математическое моделирование , в том числе имитация процессов функционирования С. с. на ЭВМ (машинный эксперимент). Для моделирования С. с. необходимо формализовать процессы её функционирования, т. е. представить эти процессы в виде последовательности четко определяемых событий, явлений или процедур, и затем построить математическое описание С. с. Элементы С. с. обычно описывают в виде динамических систем (в широком смысле), к которым, кроме классических динамических систем, относят также и другие детерминистические и стохастические объекты — такие как конечные автоматы (см. Автоматов теория ), вероятностные автоматы , системы массового обслуживания (см. Массового обслуживания теория ), кусочно-линейные агрегаты и т. п. Взаимодействие элементов С. с. обычно представляют как обмен сигналами между ними и описывают четырьмя моделями: моделью формирования выходного сигнала элемента с учётом условий его функционирования; сопряжения элементов С. с. сетью каналов связи, обеспечивающих передачу сигналов между элементами; изменения сигнала в процессе его прохождения через канал; поведения элемента при получении им сигнала. Первая и последняя модели естественным образом включаются в модель процесса функционирования динамической системы. Аналогично модель преобразования сигнала можно получить, если каждый реальный канал передачи сигналов (вместе с селектирующими и преобразующими устройствами) представить в виде соответствующей динамической системы и рассматривать как самостоятельный элемент С. с. При формализации сопряжения элементов С. с. обычно вход (выход) элемента представляют в виде совокупности «элементарных» входов (выходов) — по числу характеристик, описывающих соответствующие сигналы. Предполагается, что характеристики сигналов передаются в С. с. независимо друг от друга по «элементарным каналам», связывающим входы и выходы соответствующих элементом. Сопряжение элементов С. с. задаётся соотношением, по которому данному входу r -го элемента ставится в соответствие тот выход j- го элемента, который связан с ним «элементарным каналом». Если С. с. расчленена на подсистемы, содержащие два элемента и более, то для описания каждой подсистемы необходима соответствующая одноуровневая схема сопряжения; кроме того, нужна схема сопряжения второго уровня для описания связей между подсистемами. Совокупность этих схем сопряжения составляет двухуровневую схему сопряжения С. с. Когда подсистемы объединяются в более крупные подсистемы, образуется трехуровневая схема сопряжения и т. д. Многоуровневые схемы сопряжения аналогичного вида применяются и в С. с. с переменной во времени, управляемой или стохастической структурой связей между элементами. С. с. с многоуровневой схемой сопряжения, элементы которой являются динамическими системами, можно также рассматривать как динамическую систему; её характеристики определяются характеристиками элементов и схемой сопряжения. Поэтому на С. с. можно распространить постановку и методы решения многих задач, относящихся к анализу и синтезу классических динамических систем, конечных и вероятностных автоматов, систем массового обслуживания и т. д.
Способы построения математических моделей С. с. и методы их исследования — предмет возникшей в 60-х гг. 20 в. новой научной дисциплины — теории сложных систем. Для математического описания элементов С. с. пользуются методами функций теории , современной алгебры и функционального анализа . Исследование математических моделей С. с. обычно начинают с оценки функциональных характеристик, являющихся показателями эффективности, надёжности, помехозащищенности, качества управления и других важных свойств С. с. С формальной точки зрения упомянутые показатели представляются функционалами , заданными на множестве траекторий движения С. с. Рассмотрение зависимости функционалов от параметров С. с. открывает возможности для использования при анализе С. с. методов поля теории .
Изучение отношений между элементами и подсистемами, определение роли и места каждой подсистемы в общем процессе функционирования системы составляют предмет структурного анализа С. с. Так как схема сопряжения любой С. с. представляется как совокупность предикатов (см. Логика предикатов ), определённых на множестве входов и выходов её элементов, то для изучения структуры С. с. используют аппарат математической логики и графов теории . Методы структурного анализа позволяют выделить в С. с. наборы подсистем, находящихся в заданных отношениях, и представить С. с. как совокупность объектов с хорошо изученными типичными структурами. Кроме того, эти методы применяют для оценки т. н. структурных характеристик, которые в количественном виде отражают те или иные частные свойства схемы сопряжения элементов С. с. Количественную оценку функциональных и структурных характеристик дополняют качественным исследованием, проводимым при помощи методов т. н. качественной теории С. с. Сюда в первую очередь входят исследование устойчивости систем, в том числе построение областей устойчивости характеристик в пространстве параметров С. с., выделение типичных режимов функционирования С. с., оценка достижимости, управляемости и наблюдаемости С. с., анализ асимптотического поведения и т. д.