Kniga-Online.club
» » » » БСЭ БСЭ - Большая Советская Энциклопедия (ЛО)

БСЭ БСЭ - Большая Советская Энциклопедия (ЛО)

Читать бесплатно БСЭ БСЭ - Большая Советская Энциклопедия (ЛО). Жанр: Энциклопедии издательство неизвестно, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

  4) Если прямые имеют общий перпендикуляр, то они бесконечно расходятся в обе стороны от него. К любой из них можно восстановить перпендикуляры, которые не достигают другой прямой.

  5) Линия равных расстояний от прямой не есть прямая, а особая кривая, называемая эквидистантой, или гиперциклом.

  6) Предел окружностей бесконечно увеличивающегося радиуса не есть прямая, а особая кривая, называемая предельной окружностью, или орициклом.

  7) Предел сфер бесконечно увеличивающегося радиуса не есть плоскость, а особая поверхность — предельная сфера, или орисфера; замечательно, что на ней имеет место евклидова геометрия. Это служило Лобачевскому основой для вывода формул тригонометрии.

  8) Длина окружности не пропорциональна радиусу, а растет быстрее.

  9) Чем меньше область в пространстве или на плоскости Лобачевского, тем меньше геометрические соотношения в этой области отличаются от соотношений евклидовой геометрии. Можно сказать, что в бесконечно малой области имеет место евклидова геометрия. Например, чем меньше треугольник, тем меньше сумма его углов отличается от p; чем меньше окружность, тем меньше отношение её длины к радиусу отличается от 2p, и т. п. Уменьшение области формально равносильно увеличению единицы длины, поэтому при безграничном увеличении единицы длины формулы Л. г. переходят в формулы евклидовой геометрии. Евклидова геометрия есть в этом смысле «предельный» случай Л. г.

  Л. г. продолжает разрабатываться многими геометрами; в ней изучаются: решение задач на построение, многогранники, правильные системы фигур, общая теория кривых и поверхностей и т. п. Ряд геометров развивали также механику в пространстве Лобачевского. Эти исследования не нашли непосредственных применений в механике, но дали начало плодотворным геометрическим идеям. В целом Л. г. является обширной областью исследования, подобно геометрии Евклида.

  Приложения геометрии Лобачевского. Сам Лобачевский применил свою геометрию к вычислению определённых интегралов. В теории функций комплексного переменного Л. г. помогла построить теорию автоморфных функций. Связь с Л. г. была здесь отправным пунктом исследований Пуанкаре, который писал, что «неевклидова геометрия есть ключ к решению всей задачи». Л. г. находит применение также в теории чисел, в её геометрических методах, объединённых под названием «геометрия чисел» (см. Чисел теория). Была установлена тесная связь Л. г. с кинематикой специальной (частной) теории относительности (см. Относительности теория). Эта связь основана на том, что равенство, выражающее закон распространения света

  x2 + y2 + z2 = c2t2

  при делении на t2, т. е. для скорости света, даёт

  vx2 + vy2 + vz2 = c2

  — уравнение сферы в пространстве с координатами vx, vy, vz — составляющими скорости по осям х, у, z (в «пространстве скоростей»). Лоренца преобразования сохраняют эту сферу и, т. к. они линейны, переводят прямые пространства скоростей в прямые. Следовательно, согласно модели Клейна, в пространстве скоростей внутри сферы радиуса с, т. е. для скоростей, меньших скорости света, имеет место Л. г.

  Замечательное приложение Л. г. нашла в общей теории относительности (см. Тяготение). Если считать распределение масс материи во Вселенной равномерным (это приближение в космических масштабах допустимо), то оказывается, что при определённых условиях пространство имеет Л. г. Т. о., предположение Лобачевского о его геометрии как возможной теории реального пространства оправдалось.

  Лит.: Лобачевский Н. И., Сочинения по геометрии, М. — Л., 1946—49 (Полн. собр. соч., т. 1—3); Об основаниях геометрии. Сборник классических работ по геометрии Лобачевского и развитию ее идей, М., 1956; Александров П. С., Что такое неевклидова геометрия, М., 1950; Делоне Б. Н., Элементарное доказательство непротиворечивости планиметрии Лобачевского, М., 1956; Широков П. А., Краткий очерк основ геометрии Лобачевского, М., 1955; Каган В. Ф., Лобачевский и его геометрия. Общедоступные очерки, М., 1955; его же, Геометрия Лобачевского и ее предистория, М. — Л., 1949 (Основания геометрии, ч. 1); Ефимов Н. В., Высшая геометрия, 5 изд., М., 1971; Погорелов А. В., Основания геометрии, 3 изд., М., 1968; Розенфельд Б. А., Неевклидовы пространства, М., 1969; Нут Ю. Ю., Геометрия Лобачевского в аналитическом изложении, М., 1961; Андриевская М. Г., Аналитическая геометрия в пространстве Лобачевского, К., 1963.

  А. Д. Александров.

Рис. 3 к ст. Лобачевского геометрия.

Рис. 1 к ст. Лобачевского геометрия.

Рис. 2 к ст. Лобачевского геометрия.

Лобачевского метод

Лобаче'вского ме'тод, метод приближённого (численного) решения алгебраических уравнений, найденный независимо друг от друга бельгийским математиком Ж. Данделеном, русским математиком Н. И. Лобачевским (в 1834 в наиболее совершенной форме) и швейцарским математиком К. Греффе. Суть Л. м. состоит в построении уравнения f1(x) = 0, корни которого являются квадратами корней исходного уравнения f(x) = 0. Затем строят уравнение f2(x) = 0, корнями которого являются квадраты корней уравнения f1(x) = 0. Повторяя этот процесс несколько раз, получают уравнение, корни которого сильно разделены. В случае если все корни исходного уравнения действительны и различны по абсолютной величине, имеются простые вычислительные схемы Л. м. для нахождения приближённых значений корней. В случае равных по абсолютной величине корней, а также комплексных корней вычислительные схемы Л. м. очень сложны.

  Лит.: Лобачевский Н. И., Алгебра или вычисления конечных, Полн. собр. соч., т. 4, М. — П., 1948; Березин И. О., Жидков Н. П., Методы вычислений, 2 изд., т. 2, М., 1962.

Лобашёв Владимир Михайлович

Лобашёв Владимир Михайлович (р. 29.7.1934, Ленинград), советский физик, член-корреспондент АН СССР (1970). Член КПСС с 1970. Окончил ЛГУ (1957). В 1957—72 работал в Физико-техническом институте АН СССР. С 1972 в институте ядерных исследований АН СССР. Основные работы в области экспериментальной ядерной физики. Исследовал эффекты, возникающие при бета-распаде ядер, предложил методику измерения малой циркулярной поляризации гамма-квантов, применение которой в исследовании гамма-излучения ядер привело к обнаружению несохранения чётности и доказательству существования слабого взаимодействия между нуклонами в ядре.

  Соч.: Эксперименты по обнаружению несохранения четности в ядерных силах, «Вестник АН СССР», 1969, № 2, с. 58—64.

Лобашёв Михаил Ефимович

Лобашёв Михаил Ефимович [29.10(11.11).1907, с. Б. Фролове, ныне Буинского района Татарской АССР, — 4.1.1971, Ленинград], советский генетик и физиолог, профессор (1953), заслуженный деятель науки РСФСР. Член КПСС с 1941. Окончил ЛГУ (1931) и работал там же. Участник Великой Отечественной войны 1941—45. Заведующий лабораторией в институте физиологии им. И. П. Павлова в Колтушах (с 1949). Заведующий кафедрой генетики и селекции ЛГУ (с 1957). Основные работы по физиологии мутационного процесса, генетике поведения, сравнительной и частной генетике, действию и взаимодействию генов на молекулярном уровне, а также по физиологии высшей нервной деятельности и формированию приспособительных реакций в онтогенезе животных (концепция сигнальной наследственности). Награжден 3 орденами, а также медалями.

  Соч.: Физиология суточного ритма животных, М. — Л., 1959 (совм. с В. Б. Савватеевым); Генетика, 2 изд., Л., 1967.

  Лит.: Памяти М. Е. Лобашева, «Вестник ЛГУ. Серия биология», 1971, № 9, в. 2.

Лобби

Ло'бби, лоббизм (от англ. lobby — кулуары), система контор и агентств крупных монополий при законодательных органах США, оказывающих прямое давление (вплоть до подкупа) на законодателей и государственных чиновников в интересах этих компаний.

Лобва

Ло'бва, посёлок городского типа в Новолялинском районе Свердловской области РСФСР. Расположен на р. Лобва (бассейн Оби). Ж.-д. станция на линии Серов — Гороблагодатская. 12 тыс. жителей (1970). Лесокомбинат, гидролизный завод, леспромхоз. Вечерний лесотехнический техникум.

Лобелин

Лобели'н, алкалоид, содержащийся в растениях из рода лобелия; стимулятор дыхания. В медицинской практике применяют гидрохлорид Л. в растворе, вводимом внутривенно или внутримышечно. Показан при остановке дыхания или ослаблении дыхательной деятельности. Л. иногда используют и как диагностическое средство для определения скорости кровотока.

Перейти на страницу:

БСЭ БСЭ читать все книги автора по порядку

БСЭ БСЭ - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Большая Советская Энциклопедия (ЛО) отзывы

Отзывы читателей о книге Большая Советская Энциклопедия (ЛО), автор: БСЭ БСЭ. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*