БСЭ БСЭ - Большая Советская Энциклопедия (РА)
Связь процессов в радиационных поясах Земли с другими процессами в околоземном пространстве. Радиационные пояса испытывают различные временные вариации: расположенный ближе к Земле и более стабильный внутренний пояс — незначительные, внешний пояс — наиболее частые и сильные. Для внутреннего Р. п. З. характерны небольшие вариации в течение 11-летнего цикла солнечной активности. Внешний пояс заметно меняет свои границы и структуру даже при незначительных возмущениях магнитосферы. Пояс протонов малых энергий занимает в этом смысле промежуточное положение. Особенно сильные вариации Р. п. З. претерпевают во время магнитных бурь. Сначала во внешнем поясе резко возрастает плотность потока частиц малых энергий и в то же время теряется заметная доля частиц больших энергий. Затем происходит захват и ускорение новых частиц, в результате которых в поясах появляются потоки частиц на расстояниях обычно более близких к Земле, чем в спокойных условиях. После фазы сжатия происходит медленное, постепенное возвращение Р. п. З. к исходному состоянию. В периоды высокой солнечной активности магнитные бури происходят очень часто, так что эффекты от отдельных бурь накладываются друг на друга, и максимум внешнего пояса в эти периоды располагается ближе к Земле (L ~ 3,5), чем в периоды минимума солнечной активности (L ~ 4,5—5,0).
Высыпание частиц из магнитной ловушки, в особенности из зоны квазизахвата (авроральной радиации), приводит к усилению ионизации ионосферы, а интенсивное высыпание — к полярным сияниям. Запас частиц в Р. п. З., однако, недостаточен для поддержания продолжительного полярного сияния, и связь полярных сияний с вариациями потоков частиц в Р. п. З. говорит лишь об их общей природе, т. е. о том, что во время магнитных бурь происходит как накачка частиц в Р. п. З., так и сброс их в атмосферу Земли. Полярные сияния длятся всё время, пока идут эти процессы, — иногда сутки и более. Р. п. З. могут быть созданы также искусственным образом: при взрыве ядерного устройства на больших высотах; при инжекции искусственно ускоренных частиц, например с помощью ускорителя на борту спутника; при распылении в околоземном пространстве радиоактивных веществ, продукты распада которых будут захвачены магнитным полем. Создание искусственных поясов при взрыве ядерных устройств было осуществлено в 1958 и в 1962 годах. Так, после американского ядерного взрыва (9 июля 1962) во внутренний пояс было инжектировано около 1025 электронов с энергией ~ 1 Мэв, что на два-три порядка превысило интенсивность потока электронов естественного происхождения. Остатки этих электронов наблюдались в поясах в течение почти 10-летнего периода.
Р. п. З. представляют собой серьёзную опасность при длительных полётах в околоземном пространстве. Потоки протонов малых энергий могут вывести из строя солнечные батареи и вызвать помутнение тонких оптических покрытий. Длительное пребывание во внутреннем поясе может привести к лучевому поражению живых организмов внутри космического корабля под воздействием протонов высоких энергий.
Кроме Земли, радиационные пояса существуют у Юпитера и, возможно, у Сатурна и Меркурия. Радиационные пояса Юпитера, исследованные американским космическим аппаратом «Пионер-10», имеют значительно большую протяжённость и большие энергии частиц и плотности потоков частиц, чем Р. п. З. Радиационные пояса Сатурна обнаружены радиоастрономическими методами. Советские и американские космические аппараты показали, что Венера, Марс и Луна радиационных поясов не имеют. Магнитное поле Меркурия обнаружено американской космической станцией «Маринер-10» при пролёте вблизи планеты. Это делает возможным существование у Меркурия радиационного пояса.
Лит.: Вернов С. Н., Вакулов П. В., Логачев Ю. И., Радиационные пояса Земли, в сборнике: Успехи СССР в исследовании космического пространства, М., 1968, с. 106; Космическая физика, пер. с англ., М., 1966; Тверской Б. А., Динамика радиационных поясов Земли, М., 1968; Редерер Х., Динамика радиации, захваченной геомагнитным полем, пер. с англ., М., 1972; Хесс В., Радиационный пояс и магнитосфера, пер. с англ., М., 1972; Шабанский В. П., Явления в околоземном пространстве, М., 1972; Гальперин Ю. И., Горн Л. С., Хазанов Б. И., Измерение радиации в космосе, М., 1972.
Ю. И. Логачев.
Рис. 5. Разрез магнитосферы Земли по полуденному меридиану для случая, когда ось земного магнитного диполя перпендикулярна направлению на Солнце. Стрелками указаны области, через которые частицы солнечного ветра проникают в магнитосферу.
Рис. 3. Структура радиационных поясов Земли (сечение соответствует полуденному меридиану): I — внутренний пояс: II — пояс протонов малых энергий; III — внешний пояс; IV — зона квазизахвата.
Рис. 1. Движение заряженных частиц, захваченных в геомагнитную ловушку. Частицы движутся по спирали вдоль силовой линии магнитного поля Земли и одновременно дрейфуют по долготе.
Рис. 2. Поверхность, описываемая частицей (электроном) радиационного пояса; основной характеристикой поверхности является параметр L; N и S — магнитные полюсы Земли.
Рис. 4. Распределение плотности потоков протонов различных энергий над геомагнитным экватором. Кривые соответствуют потокам протонов с энергией выше указанной: 1 — Еp > 1Мэв; 2 — Еp > 1,6 Мэв; 3 — Еp > 5 Мэв; 4 — Еp > 9 Мэв; 5 — Еp > 30 Мэв.
Радиационные эффекты в твёрдом теле
Радиацио'нные эффе'кты в твёрдом те'ле, различные явления в твёрдом теле, вызванные воздействием ионизирующих излучений (потоков ядерных частиц, рентгеновского и g-излучений). Взаимодействуя с кристаллической решёткой, частицы и кванты вызывают образование в ней вакансий и междоузельных атомов (см. Радиационные дефекты в кристаллах), ионизацию, иногда появление примесей за счёт деления атомных ядер, ядерных реакций. Облучение вызывает изменение физических свойств кристаллов (механических, оптических, электрических и др., см. Дефекты в кристаллах). В ряде случаев облучение потоком ускоренных ионов применяется для изменения свойств поверхностных слоев твёрдых тел (см. Ионное внедрение).
Изменения свойств полимеров при облучении обусловлены радиационно-химическими превращениями (см. Радиационная химия).
Радиационный баланс
Радиацио'нный бала'нс атмосферы и подстилающей поверхности, сумма прихода и расхода лучистой энергии, поглощаемой и излучаемой атмосферой и подстилающей поверхностью. Для атмосферы Р. б. состоит из приходной части — поглощённой прямой и рассеянной солнечной радиации, а также поглощённого длинноволнового (инфракрасного) излучения земной поверхности, и расходной части — потери тепла за счёт длинноволнового излучения атмосферы в направлении к земной поверхности (т. н. противоизлучение атмосферы) и в мировое пространство.
Приходную часть Р. б. подстилающей поверхности составляют: поглощённая подстилающей поверхностью прямая и рассеянная солнечная радиация, а также поглощённое противоизлучение атмосферы; расходная часть состоит из потери тепла подстилающей поверхностью за счёт собственного теплового излучения. Р. б. является составной частью теплового баланса атмосферы и подстилающей поверхности.
Радиационный захват
Радиацио'нный захва'т нейтронов, ядерная реакция (n, g), в которой ядро-мишень захватывает нейтрон, а энергия возбуждения образующегося ядра излучается в виде g-кванта. Вероятность Р. з. зависит от свойств ядра-мишени и от энергии нейтрона E. Вероятность Р. з., как правило, уменьшается с ростом Е (исключения составляют т. н. резонансные реакции Р. з.). Для медленных нейтронов эффективное поперечное сечение Р. з. пропорционально E-1/2. Исследование спектра g-лучей Р. з. позволяет определять характеристики образующихся ядер (уровни энергии, спины, чётности). Р. з. широко используется для получения радиоактивных изотопов. Этим объясняется его применение в смежных областях. Р. з. является основным процессом, обусловливающим поглощение нейтронов в процессе работы ядерных реакторов; его используют для регулирования работы реактора.
Лит.: Демидов А. М., Методы исследования излучения ядер при радиационном захвате тепловых нейтронов, М., 1963; Мотц Г., Бэкстрем Г., Спектроскопия g-излучения, сопровождающего захват нейтронов, в кн.: Альфа, бета- и гамма-спектроскопия, под ред. К. Зигбана, пер. с англ., в. 2, М., 1969.