БСЭ - Большая Советская энциклопедия (ВА)
Для соединений переходных и ряда непереходных элементов оказалось характерным использование дополнительной В. за счёт образования связей металл — металл (кластерные соединения), при этом расстояние между атомами металлов оказалось значительно меньшим, чем в индивидуальных металлах. Например, в дигалогенидах молибдена и вольфрама во многих химических реакциях сохраняется неизменной группа (рис. 2 ), в которой атомы металла (Me) образуют правильный октаэдр; каждый атом Me связан с четырьмя другими атомами Me и с четырьмя атомами галогена (Hal), а каждый атом Hal связан с тремя атомами Me. Связи Me — Me в кластерах могут быть кратными (как, например, в , где расстояние Re — Re на 0,5 меньше, чем в металлическом Re, и на их образование атомы могут тратить не одну, а несколько В.
Недостаточность классического понимания В. видна также на примере так называемых «нуль-валентных» соединений, где атом металла связан исключительно с нейтральными молекулами; таковы карбонилы металлов типа Ti (CO)7 , Cr (CO)6 , Fe (CO)5 , аммиакаты типа Pt (NH3 )4 и т.д. В них вообще отсутствует классическое валентное взаимодействие (у атомов С и N в молекулах CO и NH3 нет неспаренных электронов), а связь осуществляется только за счёт координационных В. атома металла и молекул лигандов. Нейтральные лиганды часто оказываются мостиковыми и образуют по две, например в Co4 (CO)12 , и даже по три, например в Rh6 (CO)16 , связи.
Для теории В. особый интерес представляют так называемые p-комплексы переходных металлов с ароматическими молекулами или молекулами с сопряжёнными связями в качестве лигандов (этиленом, циклопентадиенилом, бензолом и др.) типа ферроцена Fe (C5 H5 )2 , дибензолхрома Cr (C6 H6 )2 (рис. 3 , а, б), тетрациклопентадиенила титана Ti (C5 H5 )4 и др. В отличие от комплексов типа [Сr (NHз )6 ]3+ , [Сr (H2 O)6 ]2+ или Cr (CO)6 , где центральный атом осуществляет связь с лигандом через один атом от каждого лиганда (через N — в аммиакатах, через О — в гидратах, и т.д.), в p-комплексах атомы Fe, Cr и Ti взаимодействуют совершенно одинаково со всеми атомами С каждого ароматического кольца. Непригодность классической В. или КЧ здесь очевидна: при этом пришлось бы считать все атомы углерода 5-валентными, а атомы Fe, Cr и Ti — соответственно 10-, 12- и 20-валентными. Единственный неспаренный электрон, который имеется у радикала ×C5 H5 (так же как и у многих других ароматических радикалов типа тропила ×C7 H7 и т.д.), в равной степени принадлежит всем углеродным атомам кольца. Для этого класса соединений потребовались представления о делокализованной («групповой») В., характеризующей всю совокупность атомов С в ароматическом кольце.
Сейчас стало ясно, что КЧ в комплексах, так же как В. в простых соединениях, не является жестко специфической характеристикой элемента: для большого числа металлов были найдены комплексы со всеми промежуточными значениями КЧ от 3 до 7, 8 и 9. При этом возникли трудности с самим определением КЧ: в низкосимметричных высококоординационных комплексах расстояния М — Х, даже для одинаковых лигандов X, часто оказываются неодинаковыми; при этом они могут быть больше тех достаточно коротких расстояний, при которых наличие сильного взаимодействия бесспорно, но всё же недостаточно велики, чтобы их можно было уверенно исключить из координационной сферы комплекса.
Новые проблемы В. возникли и в других разделах химии. Сильное развитие получила химия свободных радикалов [например, метил ×CH3 , трифенилметил × C (C6 H5 )3 и др., см. Радикалы свободные ], в которых имеются атомы 3-валентного углерода. В последнем десятилетии были синтезированы соединения инертных газов типа XeF2 , XeF4 , XeF6 , XeO3 и др., то есть соединения элементов, которые ранее считались вообще неспособными к химическому взаимодействию. Стало ясно и то, что В. элементов может сильно меняться с изменением внешних условий, в частности температуры. Например, PCl5 , существующий при умеренных температурах в газовой фазе в виде мономерных молекул, при конденсации диспропорционирует (см. Диспропорционирования реакция ), давая пару катион [РСl4 ]+ (КЧ = 4) — анион [РСl6 ]- (КЧ = 6). Наоборот, при повышении температуры обнаруживаются молекулы PCl3 , PCl2 , PCl, ионы PCl4 + , PCl3 + , Pd2 + , PCl+ и т.д. Благодаря успехам химии молекул в газовой фазе за последние 20 лет найдено огромное число соединений (часто сложного состава) с промежуточными и необычными В., которые не обнаруживаются у соединений в обычных условиях. Например, кроме давно известных анионов типа CO3 2- и SO4 2- , сейчас обнаружены анионы CO3 - , SO4 - и нейтральные молекулы CO3 , SO4 . Кроме насыщенных молекул типа CH4 , C2 H6, найдены ионы типа CH5 + , C2 H7 + , кроме молекулы H2 — ион Нз+ , и т.д.
Сейчас установлено, что подавляющее большинство элементов может проявлять переменную В., образуя весь ряд «валентноненасыщенных» соединений со всеми значениями В. от 1 до максимальной с изменением на 1 (например, известны молекулы BF, BF2 и BF3 ; CF, CF2 , CF3 и CF4 и т.д.). В. не может считаться жестко специфической характеристикой элемента, можно говорить лишь об относительной типичности или относительной устойчивости разных значений В. У непереходных элементов чётных и нечётных групп наиболее устойчивы соответственно чётные и нечётные В., например в молекулах типа PF3 , PF5 , SF2 , SF4 , SF6 , IF, IF3 , IF5 , IF7 и т.д., где типичная В. атомов Р, S и I изменяется на 2 единицы.
Радикалы типа ·PF4 , ·SF3 , ·SF5 , ·IF2 , ·IF4 и т.д. с четырёхвалентным фосфором, нечётновалентными аналогами серы и инертными газами и чётновалентными галогенами значительно менее стабильны, обладают отчётливо выраженной склонностью к отщеплению одного электрона (с образованием более устойчивых катионов типа PF4 + , SF3 + , SF5 + , IF2 + , IF4 + ) или одного атома заместителя и характеризуются значительно меньшими временами существования. У элементов побочных групп соотношения между типичными и менее типичными В. имеют более сложный характер.
Изучение электронных спектров показало, что двухатомные молекулы типа O2 , S2 , OS и др. имеют два неспаренных электрона; в рамках классических представлений это следовало бы интерпретировать так, будто в подобных молекулах каждый атом сохраняет неиспользованной одну свою В., хотя нет никаких видимых препятствий для их использования.
До сих пор не решена проблема В. в случае интерметаллических соединений (см. Металлиды , Металлическая связь ), имеющих обычно сложный состав типа Cu5 Zn8 , Cu31 Sn8 , Zn21 Fe5 , нестехиометрических окислов, нитридов, карбидов, силицидов и других соединений металлов, в которых состав может меняться непрерывно в сравнительно широких пределах.
Таким образом, поиск общего определения В., охватывающего все известные типы соединений и тем более способного предсказать возможность или принципиальную невозможность существования ещё не известных классов соединений, представляет сложную проблему. Конечно, параллельно с «неклассическими» соединениями химиками были синтезированы многие сотни тысяч соединений, которые могут быть интерпретированы в рамках обычных классических представлений о В. Однако ясно, что все существующие частные определения В. (см. раздел 1) ограничены определёнными классами и типами соединений, в которых преобладает какой-либо один тип химического взаимодействия. В общем же случае связи имеют промежуточный характер между чисто ионными и чисто ковалентными, в них принимают участие все типы взаимодействия одновременно, но в различных количественных соотношениях, резко изменяющихся от класса к классу и более плавно — от соединения к соединению внутри одного класса. При отсутствии общего определения В. трудность заключается в том, чтобы определить границы, где перестаёт быть справедливым одно частное определение В. и его заменяет другое. Решить эту проблему только на основании экспериментальных фактов и классических представлений невозможно. Существенную помощь здесь может оказать квантовая теория химической связи и В.
3. Современные квантово-химические представления о валентности
Начиная с 30-х гг. 20 в. представления о природе и характере В. постоянно расширялись и углублялись, параллельно с расширением и углублением представлений о химической связи. Существенный прогресс был достигнут в 1927, когда В. Гейтлер и Ф. Лондон выполнили первый количественный квантово-химический расчёт молекулы H2 . В подтверждение гипотезы Льюиса было показано, что химическая связь в H2 действительно осуществляется парой электронов и является результатом электростатического (кулоновского) взаимодействия электронов и ядер. Образование молекулы из атомов энергетически выгодно, если спины электронов направлены в противоположные стороны, когда притяжение электронов к ядру (остову) чужих атомов больше энергии отталкивания между электронами и между ядрами. Параллельная ориентация спинов приводит к отталкиванию атомов друг от друга.