Kniga-Online.club
» » » » БСЭ БСЭ - Большая Советская Энциклопедия (ЧА)

БСЭ БСЭ - Большая Советская Энциклопедия (ЧА)

Читать бесплатно БСЭ БСЭ - Большая Советская Энциклопедия (ЧА). Жанр: Энциклопедии издательство неизвестно, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

  Первые попытки применения электрических устройств в Ч. относятся к 30—40-м гг. 19 в. Первоначально получили распространение электромеханические маятниковые и балансовые Ч., в которых завод осуществлялся с помощью электромагнита, электродвигателя и т.д. Большое значение для дальнейшего развития электромеханических Ч. имели работы швейцарских часовщиков М. Гиппа и Л. Бреге, создавших Ч. с электроприводом. В электромеханических Ч. с электроприводом источник питания через контакты, управляемые маятником или балансом, периодически подключается к приводу, в результате чего в спусковом регуляторе устанавливаются автоколебания. Роль двигателя таких Ч. выполняет сама колебательная система, движение которой с помощью спец. механизма преобразуется в прерывистое вращательное движение стрелок.

  До середины 20 в. электромеханические Ч. были в основном крупногабаритными, маятникового, реже балансового типа. На усовершенствование конструкции малогабаритных, и прежде всего наручных, электромеханических балансовых Ч. значительное влияние оказало появление малогабаритных и энергоёмких источников тока, миниатюрных контактов. В начале 50-х гг. 20 в. появились балансовые наручные электромеханические Ч., выпущенные фирмами во Франции — «Лип» (Lip), в США — «Гамильтон» (Hamilton), электрическая цепь которых при подаче импульса балансу замыкалась механическими контактами.

  Замена механических контактов электронными ключами на транзисторах, туннельных диодах, интегральных микросхемах решила проблему повышения надёжности электронно-механических Ч. Современные наручные электронно-механические балансовые Ч. имеют точность хода ±15 сек в сутки, потребляют около 10 мка от источника тока напряжением 1,3—1,5 в. Такие Ч. с традиционными колебательными системами (осцилляторами) — маятником или «баланс — спиралью» — в отличие от контактных Ч. иногда называют бесконтактными. Быстродействие электронных устройств и возможность управлять ими при малых амплитудах осцилляторов обусловили развитие камертонных и кварцевых Ч., обладающих высокой точностью.

  В 70-х гг. 20 в. получили широкое распространение наручные и настольные камертонные Ч. с автономной работой без смены батареи от 1 до 2 лет при точности хода ±2 сек в сутки. Первый камертонный регулятор с контактным прерывателем был создан А. Гийе в 1915. В 1919 У. Эклс и Ф. Джордан (Великобритания) и А. Абрахам и Э. Блох (Франция) предложили схему лампового камертонного регулятора с электромагнитной системой привода. Камертонные регуляторы на транзисторах для наручных Ч. впервые были изготовлены фирмой «Булова уотч компани» (Bulova Watch Со) в США в 1950; в СССР камертонные Ч. были выпущены в 1962 на 2-м Московском часовом заводе. В этих Ч. применен храповой механизм для преобразования колебаний камертона во вращение стрелок. Одна из схем электромеханических камертонных Ч. представлена на рис. 6 . При колебаниях камертона в обмотке освобождения наводится эдс, которая открывает транзистор, в результате чего в импульсную обмотку поступает ток от источника питания. Частота колебаний камертона — 360 гц.

  В электронно-механических Ч. с относительно высокочастотными (порядка 32 кгц ) кварцевыми осцилляторами электрические импульсы спускового регулятора управляют работой шагового или синхронного электродвигателя или синхронизируют работу двигателей постоянного тока. В этих случаях схема управления состоит из электронного делителя частоты, схемы формирования импульсов и усилителей. Большинство кварцевых Ч. имеет шаговый электродвигатель. Регулировка хода Ч. осуществляется с помощью триммера в цепи кварцевого генератора. Впервые схема кварцевых Ч. была предложена В. А. Маррисоном (Великобритания) в 1929; в конце 70-х гг. такие Ч. выпускают многие фирмы, например в Швейцарии «Патек Филипп Эбош» (Patek Philippe Ebauches), «Омега» (Omega); в США — «Гамильтон»; в Японии — «Сэйко» (Seiko). Высокотемпературная стабильность, повышенная добротность и устойчивость кварцевых генераторов к внешним динамическим воздействиям обеспечивают точность бытовых малогабаритных электронно-механических Ч. около 2 сек , а в крупногабаритных прецизионных — 0,001 сек в сутки.

  Кварцевые наручные Ч. получили распространение благодаря возможностям современной технологии изготовления полупроводников и созданию интегральных микросхем. Ч. с электронной схемой и цифровой индикацией на жидких кристаллах или светодиодах называются электронными. Электронная часть этих Ч. содержит, кроме кварцевого генератора, делители частоты (счётчик), дешифраторы (рис. 7а ). В СССР выпускаются (1977) кварцевые часы как со стрелочной, так и с цифровой индикацией (рис. 7б ).

  Для согласования показаний группы Ч. применяются системы единого времени. Они состоят из первичных высокоточных Ч. и группы вторичных Ч., соединённых с первичными каналами связи. Первичные Ч. управляют работой вторичных Ч., которые могут быть обычными электромеханическими Ч. или счётчиками электрических импульсов. Для повышения точности и надёжности системы единого времени вторичные Ч. часто делают автономными (самостоятельно идущими), ход которых периодически корректируется или синхронизируется сигналами точного времени от первичных Ч.

  Современные Ч. обеспечивают широкий диапазон по точности в зависимости от практических потребностей измерения времени. Так, например, атомные эталоны, используемые, в частности, при космических исследованиях, имеют относительную погрешность около 10¾13 ; высокоточные маятниковые Ч. порядка 10¾11 ; кварцевые морские хронометры 10¾8 (т. е. точность их хода составляет несколько тысячных долей сек за сутки); наручные кварцевые часы имеют точность хода в пределах 2 сек в сутки, камертонные и балансовые электронно-механические Ч. до 15 сек в сутки; механические бытовые Ч. высокого качества до 5 сек , а среднего качества 30—60 сек в сутки; механические будильники 1—1,5 мин в сутки.

  Лит.: Аксельрод З. М., Теория и проектирование приборов времени, Л., 1969; Дроздов Ф. В., Приборы времени, М., 1940; Баутин Н. Н., Динамические модели свободных часовых ходов, в кн.: Памяти А. А. Андронова, М., 1955; Шполянский В. А., Чернягин Б. М., Электрические приборы времени, М., 1964; Константинов А. И., Флеер А. Г., Время, М., 1971; Andrade J. F. С., Horlogerie et chronométrie, P., 1924; Defossez L., Théorie générale d’horlogerie, t. 1, Le Chaux-de-Fonds, 1950; Haag J., Les mouvements vibratoires, t. 1. P., 1952.

  В. И. Денисов, Б. М. Чернягин.

Рис. 7. Кварцевые наручные часы с цифровой индикацией на жидких кристаллах: а — блок-схема; б — внешний вид; К — кристалл кварца; Г — генератор электрических колебаний; С — триммер; f — частота колебаний; Дш — дешифратор.

Рис. 4. Схема механизма маятниковых часов с крючковатым спуском: 1 — поводок; 2 — ось скобы; 3 — скоба; 4 — спусковое колесо; 5 — основная колёсная передача; 6 — колёсная передача стрелок; 7 — стрелки; 8 — гиревой привод; 9 — маятник.

Рис. 5. Схема механизма наручных механических часов: 1 — заводной барабан; 2, 3, 4 — основная зубчатая передача; 5 — спусковое колесо; 6 — баланс; 7 — спираль; 8 — анкерная вилка; 9 — триб минутной стрелки; 10 — часовое колесо; 11 — триб вексельного колеса; 12 — вексельное колесо; 13 — переводные колёса; 14 — заводной вал; 15 — заводная головка; 16 — переводной и заводной рычаги; 17 — заводной триб; 18 — кулачковая муфта; 19 — заводное колесо; 20 — барабанное колесо.

Рис. 3. Шпиндельный спуск: 1 — шпиндель; 2 — грузы шпинделя; 3, 4 — палеты; 5 — спусковое колесо; 6 — триб.

Рис. 6. Схема камертонных часов: Т — транзистор; R — резистор; C — конденсатор; L1 — обмотка освобождения; L2 — импульсная обмотка; E — источник питания (гальванический элемент); 1 — камертон; 2 — храповый механизм; 3 — колёсная передача; 4 — стрелки (часовая, минутная, секундная).

Рис. 2. Клепсидра (водяные часы): а — внешний вид; б — разрез; 1 — трубка подачи воды из постороннего источника; 2 — фигура, из глаз которой вода капля за каплей равномерно поступает по трубке 3 в резервуар 4; 5 — пробка с укрепленной на ней фигурой 6, показывающей палочкой время на цилиндрическом циферблате 7; 8 — трубка сифона, по которой в конце суток вода вытекает из наполненного резервуара 4, поворачивая цилиндр 7 вокруг вертикальной оси на 1 /365 часть окружности.

Рис. 1. Солнечные часы: а — горизонтальные; б — вертикальные; 1 — стержень (пластина), тень от которой служит указателем времени на циферблате 2.

Перейти на страницу:

БСЭ БСЭ читать все книги автора по порядку

БСЭ БСЭ - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Большая Советская Энциклопедия (ЧА) отзывы

Отзывы читателей о книге Большая Советская Энциклопедия (ЧА), автор: БСЭ БСЭ. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*