БСЭ БСЭ - Большая Советская Энциклопедия (АМ)
Соч.: Journal et correspondance de André Marie Ampère, 9 éd., P., 1893; Correspondance du grand Ampere, publ. par L. de Launay..., v. 1—3, P., 1936—43; в рус. пер. — Электродинамика, М., 1954 (имеется библиография трудов А. и литература о нём).
Лит.: Белькинд Л. Д., А. М. Ампер. 1775—1836, М., 1968 (библ., с. 234—251).
Ампер (физич.)
Ампер,
1) единица силы электрического тока, входит в число основных единиц Международной системы единиц и системы электрических и магнитных единиц МКСА. Названа в честь французского физика А. Ампера; русское обозначение — а, международное А. С момента введения А. в качестве единицы силы тока (1881, 1-й Международный конгресс электриков) его определение претерпело ряд изменений. Вначале А. был определён как сила тока, который протекает по проводнику сопротивлением в 1 ом при разности потенциалов на концах проводника в 1 в. При этом вольт определялся как 108, а ом — как 109 соответствующих единиц электромагнитной системы СГСМ.
Трудности практического воспроизведения теоретически установленных абсолютных электрических единиц привели к введению международных электрических единиц (1893), основанных на вещественных эталонах. Международный А. был определён как сила неизменяющегося электрического тока, который, проходя через водный раствор азотнокислого серебра, выделяет 1,11800 мг серебра в 1 сек. Прогресс, достигнутый затем в области электрических измерений, позволил отказаться от вещественного эталона А. (с 1948). В ГОСТ 9867—61 «Международная система единиц» А. определяется через механическое взаимодействие двух токов (см. Ампера закон): «А. есть сила неизменяющегося тока, который, будучи поддерживаем в двух параллельных прямолинейных проводниках бесконечной длины и ничтожно малого кругового сечения, расположенных на расстоянии 1 м один от другого в вакууме, вызвал бы между этими проводниками силу, равную 2´10-7 единицы силы системы МКС на 1 м длины». А. воспроизводится с помощью т. н. токовых весов, или ампер-весов, которые позволяют с высокой точностью определить силу механического взаимодействия двух катушек с током, а следовательно, и значение силы тока. Международный А. мало отличается от абсолютного А.: 1 амежд = 0,99985а.
2) Единица магнитодвижущей силы (в системах СИ и МКСА): «А. — магнитодвижущая сила вдоль замкнутого контура, сцепленного с контуром постоянного тока силой 1 а». Соотношение между гильбертом (единицей системы СГС) и А.: 1 гб = 10/(4p)а = 0,7958а. Старое наименование единицы магнитодвижущей силы — ампер-виток (ав).
Лит.: Маликов С. Ф., Единицы электрических и магнитных величин. Исторический очерк, 2 изд., М. — Л., 1960; Бурдун Г. Д., Единицы физических величин, 4 изд., М., 1966; Бурдун Г. Д., Калашников Н. В. и Стоцкий Л. Р., Международная система единиц, М., 1964.
А. М. Ампер.
Ампера закон
Ампе'ра зако'н, закон механического (пондеромоторного) взаимодействия двух токов, текущих в малых отрезках проводников, находящихся на некотором расстоянии друг от друга.
Сила F12 , действующая со стороны первого отрезка проводника Dl1 на второй Dl2 (рис. 1), равна:
Расстояние между отрезками r12 считается направленным от первого отрезка ко второму, а направлениям отрезков приписываются направления текущих в них токов I1 и I2; u1 — угол между направлениями Dl1 и r12 ; u2 — угол между Dl2 и перпендикуляром n к плоскости, содержащей Dl1 и r12 (направление n совпадает с поступательным движением буравчика при вращении его рукоятки от Dl1 к r12); k — коэффициент, зависящий от выбора системы единиц.
Сила взаимодействия элементов проводников с током (элементов тока) не является центральной: направление силы F12 не совпадает с прямой, соединяющей отрезки. Эта сила перпендикулярна отрезку Dl2 и лежит в плоскости, содержащей Dl1 и r12. Направление силы определяется правилом буравчика: при вращении рукоятки буравчика от r12 к n поступательное движение буравчика совпадает с направлением силы.
В системе единиц СГС (Гаусса) k = 1/с2, где с = 3´1010 см/сек — скорость света в вакууме. В системе СИ k = m0/4p, где m0 = 4p´10-7 гн/м — магнитная проницаемость вакуума.
Сила F21, с которой второй элемент тока действует на первый, выражается формулой, аналогичной (1). По абсолютной величине силы F12 и F21 равны. Однако в общем случае произвольно ориентированных друг относительно друга Dl1 и Dl2 направления сил F12 и F21 не лежат на одной прямой и не удовлетворяют принципу равенства действия и противодействия.
В частном случае параллельных проводников силы взаимодействия стремятся сблизить проводники, если текущие в них токи параллельны (рис. 2, а), и удалить их друг от друга, если токи антипараллельны (рис. 2, б). Таким образом, параллельные токи притягиваются, а антипараллельные — отталкиваются.
А. з. называют также формулу, определяющую силу F , с которой магнитное поле, характеризуемое вектором магнитной индукции B, действует на элементарный отрезок проводника Dl, по которому течёт ток силы I:
F = kIDl´B´sinu
где u — угол между направлениями Dl и B. В системе Гаусса k = 1/с, в системе СИ k = 1. Формула (2) получается из формулы (1), если в ней выделить часть, не содержащую величин, относящихся ко второму элементу тока, и под В понимать магнитную индукцию, созданную первым элементом тока в точке, где расположен второй элемент тока (см. Био — Савара закон).
В случае постоянного тока нельзя изолировать отдельный элемент тока, так как цепь постоянного тока всегда замкнута. Экспериментально можно лишь измерить силовое действие одного замкнутого тока на другой замкнутый ток или же силу, испытываемую одним током в магнитном поле, создаваемом другим током. Эта сила равна векторной сумме сил, действующих на каждый элемент тока со стороны магнитного поля другого тока (при этом магнитное поле есть результирующее поле всех элементов тока). Для равнодействующих сил, испытываемых взаимодействующими замкнутыми токами, принцип равенства действия и противодействия оказывается справедливым.
На А. з. основан эталон единицы силы тока — ампера, осуществляемый в виде токовых весов.
Г. Я. Мякишев.
Рис. 1. к ст. Ампера закон.
Рис. 2. Взаимодействие двух элементарных токов: а — параллельных, б — антипараллельных. Все отрезки (векторы) на рис. лежат в одной плоскости.
Ампера теорема
Ампе'ра теоре'ма, сформулирована А. Ампером в 1820; устанавливает, что магнитное поле предельно тонкого плоского магнита (магнитного листка) тождественно полю замкнутого (кругового) линейного тока, текущего по контуру этого магнита (см. рис.). Согласно А. т., магнитное поле Н кругового линейного тока силой i эквивалентно полю магнитного листка в том случае, если «элементарные магнитики», образующие листок, располагаются в нём с плотностью, при которой магнитный момент единицы площади листка равен силе тока i (в амперах). Из А. т. следует, что магнитные поля замкнутых постоянных токов можно заменять полями фиктивных «магнитных зарядов» (положительных и отрицательных) и тем самым сводить задачу изучения магнитных полей постоянных токов к магнитостатике.
Рис. к ст. Ампера теорема.
Ампер-весы
Ампе'р-весы', то же, что токовые весы.
Ампер-витки
Ампе'р-витки',
1) произведение числа витков катушки, по которой протекает электрический ток, на значение силы этого тока в амперах.