Kniga-Online.club
» » » » БСЭ БСЭ - Большая Советская Энциклопедия (ГИ)

БСЭ БСЭ - Большая Советская Энциклопедия (ГИ)

Читать бесплатно БСЭ БСЭ - Большая Советская Энциклопедия (ГИ). Жанр: Энциклопедии издательство неизвестно, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

  В России организационное оформление Гидрографической службы было осуществлено в 1718 учреждением Адмиралтейств-коллегий, которой было поручено ведать и этой стороной морского дела. В 1827 учреждено Управление Генерал — Гидрографа, преобразованное в 1885 в Главное гидрографическое управление.

  За рубежом развитие Г. начинается с первой половины 18 в. —во Франции (1720), Великобритании и Голландии (1737); в США с 1830. Развитие научной Г. в России и СССР связано с именами А, А. Тилло, А И, Вилькицкого, Ю. М. Шокальского, В. М. Родевича, Е. В. Близняка, И. Ф. Молодых и др. См. также Гидрографическая служба.

  Лит.: Близняк Е. В., Овчинников К. М., Быков В. Д., Гидрография рек СССР, М., 1945; Максимов Г. С., Гидрография как наука, в кн.: Ученые записки высшего Арктического морского училища, в 1, Л. — М., 1949; его же, Гидрографическая опись, М. — Л., 1949; Шейкин П. А., Гидрографические работы на реках, Л., 1949; Наставление по рекогносцировочным гидрографическим исследованиям рек, Л., 1949; Давыдов Л. К. Гидрография СССР, т. 1—2, Л., 1953—55; Глушков В. Г., Вопросы теории и методы гидрологических исследований, М., 1961; Белобров А. П., Гидрография моря, М., 1964; Соколов А. А., Гидрография СССР, Л., 1964.

  А. И. Чеботарев, К. Г. Тихоцкий.

Гидродикцион

Гидродикцио'н, род пресноводных зелёных водорослей; то же, что водяная сеточка.

Гидродинамика

Гидродина'мика (от гидро... и динамика), раздел гидромеханики, в котором изучаются движение несжимаемых жидкостей и взаимодействие их с твёрдыми телами. Методами Г. можно исследовать также движение газов, если скорость этого движения значительно меньше скорости звука в рассматриваемом газе. При скорости движения газа, близкой к скорости звука или превышающей её, начинает играть заметную роль сжимаемость газа и методы Г. уже неприменимы. Такое движение газа исследуется в газовой динамике.

  При решении той или иной задачи в Г. применяют основные законы и методы механики и, учитывая общие свойства жидкостей, получают решение, позволяющее определить скорость, давление и касательную напряжения в любой точке занятого жидкостью пространства. Это даёт возможность рассчитать, в частности, и силы взаимодействия между жидкостью и твёрдым телом. Главными свойствами жидкости, с точки зрения Г., являются её лёгкая подвижность, или текучесть, выражающаяся в малом сопротивлении жидкости деформациям сдвига, и сплошность (в Г. жидкость считается непрерывной однородной средой); кроме того, в Г. принимается, что жидкости не сопротивляются растяжению.

  Основные уравнения Г. получаются путём применения общих законов физики к элементарной массе, выделенной в жидкости, с последующим переходом к пределу при стремлении к нулю объёма, занимаемого этой массой. Одно из уравнений, называемое неразрывности уравнением, получается путём применения к элементу, выделенному в жидкости, закона сохранения массы: другое уравнение (или в проекциях на оси координат — три уравнения) получается в результате применения к элементу жидкости закона о количестве движения, согласно которому изменение количества движения элемента должно совпадать по величине и направлению с импульсом силы, приложенной к нему. Решение общих уравнений Г. исключительно сложно и может быть доведено до конца не всегда, а только в небольшом числе частных случаев. Поэтому приходится упрощать задачи путём отбрасывания в уравнениях членов, которые в данных условиях имеют менее существенные значение для определения характера течения. Например, в ряде случаев можно с достаточной для практики точностью описать реально наблюдаемое течение, пренебрегая вязкостью жидкости; т. о., приходят к теории идеальной жидкости, которую можно применять для решения многих гидродинамических задач. В случае движения жидкостей с весьма большой вязкостью (густые масла и т.п.) величина скорости течения изменяется незначительно и можно пренебречь ускорением. Это приводит к др. приближённому решению задач Г.

  В Г. идеальной жидкости особенно важное значение имеет Бернулли уравнение, согласно которому вдоль струйки жидкости имеет место следующее соотношение между давлением р, скоростью v течения жидкости (с плотностью r) и высотой z над плоскостью отсчёта p + 1/2rv2 + rgz = const. (g — ускорение свободного падения). Это уравнение является основным в гидравлике.

  Анализ уравнений движения вязкой жидкости показал, что для геометрически и механически подобных течений (см. Подобия теория) величина rvl/m= Re должна быть постоянной (l — характерный для задачи линейный размер, например радиус обтекаемого тела или сечения трубы и т.п., r, v и m — соответственно плотность, скорость, коэффициент вязкости жидкости). Эта величина называется Рейнольдса числом и определяет режим движения вязкой жидкости: при малых значениях Re (для трубопроводов при Re = vcpd/n £ 2300, где d — диаметр трубопровода, n = m/r) имеет место слоистое, или ламинарное течение, при больших значениях Re струйки размываются и в жидкости происходит хаотическое перемешивание отдельных масс; это т. н. турбулентное течение.

  Решение основных уравнений Г. вязкой жидкости оказалось возможным найти только для крайних случаев — для Re очень малых, что соответствует (при обычных размерах) большой вязкости, и для Re очень больших, что соответствует течениям жидкостей с малой вязкостью. В ряде технических вопросов особо важны задачи о течениях жидкостей с малой вязкостью (вода, воздух). В этом случае уравнения Г. можно значительно упростить, выделив слой жидкости, непосредственно прилегающий к поверхности обтекаемого тела, в котором вязкостью пренебречь нельзя; этот слой называется пограничным слоем. За пределами пограничного слоя жидкость может рассматриваться как идеальная. Для характеристики движений жидкости, в которых основную роль играет сила тяжести (например, волны, образующиеся на поверхности воды при ветре, прохождении корабля и т.д.), в Г. вводится др. безразмерная величина v2/gl = Fr, называемая числом Фруда.

  Практические применения Г. чрезвычайно разнообразны. Г. пользуются при проектировании кораблей и самолётов, расчёте трубопроводов, насосов, гидротурбин и водосливных плотин, при исследовании морских течений и речных наносов, изучении фильтрации грунтовых вод и нефти в подземных месторождениях и т.п. Об истории Г. см. в ст. Гидроаэромеханика.

  Лит.: Прандтль Л.. Гидроаэромеханика, пер. с нем., М., 1949.

Гидродинамическая передача

Гидродинами'ческая переда'ча, механизм для бесступенчатого изменения передаваемого от двигателя крутящего момента или частоты вращения вала машины-орудия; рабочий процесс Г. п. осуществляется за счёт работы лопастных насоса и турбины. Г. п. была предложена в начале 20 в. в виде соосно расположенных центробежного насоса и турбины, сближенных т. о., что их колёса образуют горообразную полость, заполненную рабочей жидкостью — маловязким маслом или водой. Побудителем движения жидкости является насос, колесо которого соединено с двигателем; энергия, полученная жидкостью от насоса, передаётся турбиной приводимой машине.

  Г. п. только с двумя колёсами — насосным и турбинным (рис.), имеет равные на обоих валах крутящие моменты и называют гидродинамической муфтой (гидромуфтой). В номинальном режиме частота вращения турбинного вала гидромуфты на 1,5—4% меньше частоты вращения вала насоса; кпд гидромуфты составляет 95—98%.

  Гидротрансформаторы имеют три лопаточных колеса (насосное, направляющего аппарата и турбинное) или более. Они бывают с одно- или многоступенчатой турбиной. В последнем случае удаётся расширить область изменения частоты вращения вторичного вала и получить большее увеличение крутящего момента на турбинном колесе по отношению к моменту на валу насоса в режиме страгивания, т. е. когда турбинный вал полностью остановлен (у трёхступенчатых турбин до 12:1). Г. п. допускают регулирование крутящего момента за счёт изменения заполнения их рабочей полости. Этот способ широко применяется для регулирования гидромуфт. Чтобы уменьшить падение кпд в гидротрансформаторах, регулирование ведут поворотом лопастей рабочих колёс. В некоторых конструкциях гидротрансформаторов предусматривается отключение направляющего аппарата, что обращает механизм в гидромуфту — это т. н. комплексная передача. Г. п. строятся с передаточным отношением от 0,6 до 6 и кпд 0,86—0,92. Раздельная Г. п., т. е. отдельно расположенные насос и турбина, соединённые трубами, позволяет произвольно размещать турбину относительно двигателя, дробить мощность двигателя между несколькими потребителями и, наоборот, суммировать мощность нескольких двигателей для привода одной машины. Несмотря на то, что кпд раздельных Г. п. составляет 65—70%, они находят всё большее применение в тех случаях, когда приводимая машина должна размещаться в месте, где невозможно или затруднено обслуживание: приводы буровых установок, насосы топливных систем летательных аппаратов, насосы химических установок и др.

Перейти на страницу:

БСЭ БСЭ читать все книги автора по порядку

БСЭ БСЭ - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Большая Советская Энциклопедия (ГИ) отзывы

Отзывы читателей о книге Большая Советская Энциклопедия (ГИ), автор: БСЭ БСЭ. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*