БСЭ БСЭ - Большая Советская Энциклопедия (ОТ)
, (10)
согласно которому увеличение кинетической энергии пропорционально уменьшению суммы масс покоя. Это соотношение широко используется в ядерной физике; оно позволяет предсказывать энерговыделение в ядерных реакциях, если известны массы покоя участвующих в них частиц. Возможность протекания процессов, в которых происходит превращение энергии покоя в кинетическую энергию частиц, ограничена др. законами сохранения (например, законом сохранения барионного заряда , запрещающим процесс превращения протона в позитрон и g-квант).
Иногда вводят массу, определяемую как
; (11)
при этом связь между импульсом и энергией имеет тот же вид, что и в ньютоновской механике: р = m движ u . Определённая таким образом масса отличается от энергии тела лишь множителем 1/с 2 . (В теоретич. физике часто выбирают единицы измерения так, что с = 1, тогда Е = m движ .)
Основные уравнения релятивистской механики имеют такой же вид, как второй закон Ньютона и уравнение энергии, только вместо нерелятивистских выражений для энергии и импульса используются выражения (8):
,
, (12)
где F — сила, действующая на тело. Для заряженной частицы, движущейся в электромагнитном поле, F есть Лоренца сила .
Теория относительности и эксперимент
Предположения о точечных событиях, справедливости принципа относительности, однородности времени и однородности и изотропии пространства с неизбежностью приводят к О. т. При этом абстрактно допустим предельный случай, соответствующий с = ¥, однако такая возможность исключена экспериментально: доказано с огромной точностью (см. ниже), что предельная скорость с есть скорость света в вакууме (её значение дано в начале статьи).
Каковы границы применимости О. т.? Отклонения от пространственно-временной геометрии О. т., связанные с гравитацией, наблюдаемы и рассчитываются в ОТО; никаких др. ограничений применимости О. т. пока не обнаружено, хотя неоднократно высказывались подозрения, что на очень малых расстояниях (например, ~10–17 см ) понятие точечного события, а следовательно, и О. т. могут оказаться неприменимыми (см., например, Квантование пространства-времени ).
Предположение о лоренц-инвариантности и точечности событий (означающей локальность взаимодействий) лежит в основе всех современных теорий, в которых существен релятивизм. Справедливость квантовой электродинамики электронов и мюонов , а следовательно, и О. т. установлена вплоть до расстояний 10–15 см . При энергиях порядка масс этих частиц согласие квантовой электродинамики с опытом установлено с относительной точностью, несколько лучшей, чем 10–5 ; с точностью того же порядка должна быть справедлива и механика О. т.
Релятивистские законы сохранения применяются при исследованиях превращений элементарных частиц, вызванных сильным, слабым и электромагнитным взаимодействиями; отсутствие противоречий подтверждает справедливость этих законов. Всё, что известно о названных взаимодействиях, согласуется с представлением об их лоренц-инвариантности.
Предположение о невозможности сверхсветовых сигналов, вытекающее из О. т., лежит в основе дисперсионных методов, широко используемых в теории сильных взаимодействий (см. также Квантовая теория поля ); их успех демонстрирует справедливость основных представлений О. т.
Одним из наиболее ярких подтверждений справедливости релятивистской инвариантности явилось предсказание на её основе существования античастиц и их последующее открытие (см. Дирака уравнение , Античастицы ).
Требование лоренц-инвариантности взаимодействий приводит при очень общих предположениях к т. н. СРТ-теореме , устанавливающей связь между свойствами частиц и античастиц. Эта связь выполняется на опыте для всех известных взаимодействий.
Неоднократно ставились опыты по прямой проверке основных черт кинематики О. т. Независимость скорости света от движения источника проверена с наилучшей точностью в 1964 в опытах [Европейский центр ядерных исследований (ЦЕРН, Швейцария)], в которых использовались g-кванты от распада p°-мезона; при скорости p°u = 0,9997с относит. точность совпадения скорости g-кванта с с составляла 10–4 . Релятивистское замедление времени измерено в широком интервале скоростей с помощью поперечного Доплера эффекта и непосредственно по распадам элементарных частиц с точностью 1–5%. Неоднократно проверялась также формула ; наилучшая достигнутая точность — 5×10–4 (В. Мейер и др., 1963).
История частной теории относительности
Хотя О. т. в логическом смысле проста, путь, приведший к ней, был сложным. Справедливость принципа относительности для механических явлений и его связь с явлением инерции были поняты после появления теории Н. Коперника : отсутствие видимых проявлений движения Земли с неизбежностью приводило к заключению, что общее движение системы не сказывается на происходящих в ней механических явлениях. Уже в 16 в. это поясняли, описывая эксперименты на движущемся корабле. Классическое изложение принципа относительности было дано в 1632 Г. Галилеем : «Заставьте теперь корабль двигаться с любой скоростью и тогда (если только движение будет равномерным и без качки в ту и другую сторону) во всех...явлениях вы не обнаружите ни малейшего изменения и ни по одному из них не сможете установить, движется ли корабль или стоит неподвижно» (Галилей Г., Диалог о двух главнейших системах мира: птоломеевой и коперниковой, М.–Л., 1948, с. 147). Принцип относительности широко использовался Х. Гюйгенсом для решения задач механики.
Полная система законов движения для любой механической системы была дана И. Ньютоном в «Началах» (1687). Ньютон, установив, что законы механики не могут быть справедливыми в любой системе отсчёта, ввёл понятия абсолютного пространства и абсолютного времени; по существу это были для него система отсчёта и временная переменная t , для которых выполнялись законы движения. Вопрос об измерении времени в механике Ньютона был простым, т.к. любые равномерно движущиеся часы годились для измерения t . Более сложным был вопрос об абсолютном пространстве. В механике Ньютона выполнялся принцип относительности. Согласно формулировке Ньютона, «относительные движения друг по отношению к другу тел, заключённых в каком-либо пространстве, одинаковы, покоится ли это пространство или движется равномерно и прямолинейно без вращения» («Математические начала натуральной философии», см. Крылов А. И., Собрание трудов, т. 7, 1936, с. 49). Поэтому нельзя было отличить покоящуюся в абсолютном пространстве систему отсчёта от равномерно движущейся. Переход от одной и. с. о. к другой в механике Ньютона описывался преобразованиями x ’ = х – ut , t ’ = t , называется сейчас преобразованиями Галилея. Такая форма преобразований казалась очевидной, т.к. не сомневались в том, что длины предметов должны быть одинаковыми в любой системе отсчёта, а время единым. Эта уверенность подтверждалась инвариантностью законов Ньютона относительно преобразований Галилея. Столь же несомненным казалось то, что для оптических явлений принцип относительности несправедлив. Уже в 17 в. широко использовалось представление о заполняющей пространство среде — эфире . Среди многих функций, приписывавшихся эфиру, была передача световых возмущений. В начале 19 в. была разработана оптика Т. Юнга — О. Френеля , в которой скорость света относительно эфира считалась константой, не зависящей от движения источника. Отсюда следовало нарушение принципа относительности, т.к. для наблюдателя, движущегося в эфире со скоростью u навстречу световому лучу, скорость света должна была бы равняться с + u (эфирный ветер). Такой эфирный ветер должен был бы возникать, в частности, из-за орбитального движения Земли (со скоростью 30 км /сек ). Поиски эфирного ветра затруднялись, однако, тем, что уже по теории Френеля эффекты порядка u /c (~10–4 для орбитального движения Земли) должны отсутствовать в широком классе опытов.
Проблема эфира заняла одно из центр. мест в физике после построения Дж. Максвеллом теории электромагнитного поля, в которой эфир стал носителем не только световых волн, но и электрических и магнитных полей. Попытки обнаружения эфирного ветра были сделаны А. Майкельсоном (1881) и А. Майкельсоном и Э. Морли (1887), искавшими эффект порядка u 2 /c 2 , и дали отрицательный результат (см. Майкельсона опыт ). Возникла проблема согласования опыта Майкельсона с оптикой и электродинамикой, основанными на представлении об эфире. Наиболее очевидными казались объяснения, базирующиеся на гипотезе полного увлечения эфира движущимися телами. Оптические и электромагнитные теории, использовавшие эту гипотезу, обсуждались (Дж. Г. Стокс , Г. Герц ), но они оказались либо внутренне противоречивыми, либо не описывали всей совокупности экспериментальных фактов. Наиболее успешной была электродинамика Х. Лоренца , в основе которой лежало представление о неподвижном эфире и которая, на первый взгляд, была несовместима с принципом относительности. В 1892 Лоренц (ранее английский физик Дж. Фицджеральд, 1889) заметил, что отрицательный результат опыта Майкельсона объясняется, если продольные размеры всех тел сокращаются в раз при движении тел относительно эфира со скоростью u . Это сокращение (т. н. Лоренца – Фицджеральда сокращение) Лоренц объяснял изменением действующих в телах электромагнитных сил при движении тела через эфир. В 1895 Лоренц, рассматривая соответствие между движущейся и неподвижной относительно эфира системами тел, ввёл (в приближении u /c ) понятие «местного времени» t ’ = t – (u /c )(x – ut ) и доказал, что эффекты движения относительно эфира отсутствуют в порядке u /c .