Д Самин - 100 великих научных открытий
В высшей степени важным, особенно для того времени, является также то место доклада, где Бутлеров говорит о возможности судить о строении молекул вещества химическими методами и, прежде всего, методами синтеза органических соединений.
По этому вопросу Бутлеров в своем докладе говорит: „Заключения о химическом строении веществ, по всей вероятности, можно всего лучше будет основывать на изучении способов их синтетического образования — и преимущественно — на таких синтезах, которые совершаются при температуре мало возвышенной и — вообще — при условиях, где можно следить за ходом постепенного усложнения химической частицы“.
Однако наиболее ответственным местом доклада Бутлерова является вопрос о возможности выражать формулами строение того или иного вещества.
По этому принципиальному вопросу научная позиция Бутлерова резко отличалась от взглядов и убеждений всех его предшественников. Именно A.M. Бутлеров, в противоположность Жерару, Кекуле, Кольбе и другим химикам, считал возможным и необходимым выражать строение определенного соединения лишь одной формулой Это место доклада и знаменует, как я выразился, Рубикон, который перешагнул Бутлеров, оно-то и дает нам право утверждать, что Бутлеров является истинным творцом теории химического строения».
Итак, теория заявила свое право на существование. Она требовала дальнейшего развития и экспериментальных доказательств.
В 1863 году Бутлеров, воздействуя диметилцинком на хлористый ацетил, получил впервые в истории химии самый простой третичный спирт — третичный бутиловый спирт, или триметилкарбинол. Вскоре после этого в литературе появились сообщения об успешно проведенном синтезе первичного и вторичного бутиловых спиртов. Теперь уже ни о каком споре и речи быть не могло — существовало четыре различных бутиловых спирта. И все они — изомеры.
Какой это был триумф структурной теории! И как счастлив был ее автор. Триумфом теории химического строения органических соединений Бутлерова явилось правильное объяснение на основе этой теории явлений изомерии. В статье «О различных способах объяснения некоторых случаев изомерии», опубликованной в 1863 году на немецком и в 1864 году на французском языках, Бутлеров сделал вывод: «Если при одинаковом составе вещества отличаются свойствами, то они должны также отличаться и своим химическим строением». Лучшим подтверждением учения Бутлерова об изомерии послужил синтез теоретически предсказанных изомеров — изобутана и изобутилена.
В 1862–1865 годах Бутлеров высказал основное положение теории обратимой изомеризации — таутомерии, механизм которой, по Бутлерову, заключается в расщеплении молекул одного строения и соединении их остатков с образованием молекул другого строения. Успех принес ученому уверенность, но в то же время поставил перед ним новую, более трудную задачу. Необходимо было применить структурную теорию ко всем реакциям и соединениям органической химии, а главное, написать новый учебник по органической химии, где все явления рассматривались бы с точки зрения новой теории строения.
Бутлеров работал над учебником почти два года без перерыва. Книга «Введение к полному изучению органической химии» вышла из печати тремя выпусками в 1864–1866 годах.
Появление этого учебника имело огромное значение для распространения нового учения среди химиков. Книга вызвала настоящую революцию в химической науке. Уже в 1867 году началась работа по ее переводу и изданию на немецком языке.
Издание Бутлеровым на русском и немецком языках руководства по органической химии, где впервые теория химического строения была последовательно проведена через все тогда известные классы органических соединений, наряду с его блестящими синтезами, способствовали широкому признанию и укреплению его теории среди химиков всего мира.
Вскоре после этого вышли издания почти на всех основных европейских языках. По словам немецкого исследователя Виктора Мейера, она стала «путеводной звездой в громадном большинстве исследований в области органической химии».
В своих исследованиях Бутлеров продолжал развивать структурную теорию. Он задался целью доказать, что разветвленную и прямую углеродные цепи могут иметь все типы органических соединений. Это вытекало непосредственно из теории, но теоретические положения надо было доказать на практике. Разве нельзя получить углеводород — например, бутан, — четыре углеродных атома которого были бы связаны друг с другом не последовательно, а так, как они связаны в триметил-карбиноле? Но чтобы найти правильный метод его синтеза, требовалось множество опытов.
И вот, наконец, усилия Бутлерова увенчались успехом. В большой колбе был долгожданный изобутилен. Доказано существование разветвленной цепи углеводородов!
Сегодня, между прочим, получение углеводородов и спиртов, которыми занимался Бутлеров, достигло колоссальных промышленных масштабов, их получают в миллионах тонн.
ОРГАНИЧЕСКИЙ СИНТЕЗ
В 1834 году Т. Пелуз приготовил цианистые алкилы действием цианистого калия на алкилсернокислые соли. В том же году Ж. Б. Дюма удалось установить, что из хлороформа под действием едкого кали образуется муравьиная кислота. Таким образом, Дюма открыл общий способ получения кислот гидролизом галогенопроизводных.
В 1842 году Л. Мельзенсом был предложен способ восстановления галогенопроизводных амальгамами щелочных металлов.
Еще через пять лет Ж.Б. Дюма, Ф. Малагути, Ф. Леблан, Э. Франкланд, а также Г. Кольбе в 1848 году предложили общий метод получения кислот из соединений с меньшим содержанием углерода через нитрилы. В это же время Э. Митчерлих стал первым химиком, применившим смесь концентрированных азотной и серной кислот для получения нитробензола из бензола.
Ю. Либих и Ф. Велер еще 1832 году наблюдали переход бензальдегида в бензойную кислоту в присутствии щелочи, а в 1853 году С. Канниццаро установил, что при этом образуется соответствующий спирт.
Стоит отметить и открытие явления каталитического окисления спиртов и углеводов в кислоты в присутствии платиновой черни.
Эти и другие примеры свидетельствовали о достижениях в области получения и превращений органических соединений. Все с большей уверенностью можно было говорить о возможности осуществления органического синтеза.
«В 1854 году Г. Кольбе указывал, — пишет Е.П. Никулина, — что после синтеза мочевины упала естественная граница, разделявшая органические и неорганические соединения, и прежняя классификация веществ на органические и неорганические, исходившая из невозможности искусственного получения первых, потеряла основание».
Новый этап в развитии органического синтеза связан с именем Бертло. «Изучение работ Бертло в области органического синтеза показало, — продолжает Никулина, — что ему принадлежит значительная роль в развитии этого направления органической химии. До работ Бертло синтез как самостоятельный раздел органической химии не существовал. Отдельные методы его были разработаны различными химиками, но эти достижения не были связаны в единую систему».
Сам Бертло так оценивал деятельность своих предшественников: «До работ, изложенных в моей книге „Органическая химия, основанная на синтезе“ (1860), в этом направлении не было проведено ни одного систематического исследования. Можно привести только два примера полного синтеза природных веществ из элементов: синтез мочевины Велера и синтез уксусной кислоты Кольбе. Эти синтезы чрезвычайно интересны; но вследствие самой природы этих веществ, они оставались единичными и без последствий. Действительно, мочевина относится к ряду циана, ряду, который почти в равной степени принадлежит неорганической и органической химии и который не имеет никаких общих свойств с другими рядами, в том числе ни со спиртами, ни с углеводородами. Уксусная кислота также занимает особое место; до проведения новых опытов и появления новых методов, разработанных после 1860 года, эта кислота оставалась „изолированным телом в ряду органических соединений“ (Ж. Б. Дюма). История науки подтверждает также, что эти два синтеза не положили начало ни одному общему методу и даже не привели ни к какому другому частичному синтезу природных веществ».
В отношении частичных синтезов Бертло отметил, что отдельные удачные синтезы, выполненные до него, не привели к осознанию важности проблемы синтеза в целом.
Марселен Бертло (1827–1907) родился и вырос в Париже в небогатой семье врача. В лицее он был одним из лучших учеников. Следующая ступень в обучении — Коллеж де Франс, где он слушает лекции Клода Бернара, Антуана Жерома Балара, Мишеля Эжена Шевреля и других видных ученых.
Осенью 1848 года Бертло с успехом сдал экзамен на степень бакалавра и поступил в университет. После долгих колебаний по совету родителей Бертло стал изучать медицину. Однако занятия не удовлетворяли его, он испытывал потребность в более широких знаниях. В конце первого учебного года он становится лиценциатом физики. Одновременно Марселен начал изучать химию как одну из основных дисциплин в общей подготовке врачей. В конце концов, он решил найти химическую лабораторию, в которой мог бы приобрести опыт экспериментатора.