БСЭ БСЭ - Большая Советская Энциклопедия (КВ)
2. Вторичное квантование. Переход от классической механики к квантовой называют просто квантованием, или реже — «первичным квантованием». Как уже говорилось, такое квантование не даёт возможности описывать изменение числа частиц в системе. Основной чертой метода вторичного квантования является введение операторов, описывающих порождение и уничтожение частиц. Поясним действие этих операторов на простом примере (или модели) теории, в которой рассматриваются одинаковые частицы, находящиеся в одном и том же состоянии (например, все фотоны считаются имеющими одинаковую частоту, направление распространения и поляризацию). Т. к. число частиц в данном состоянии может быть произвольным, то этот случай соответствует бозе-частицам, или бозонам,
подчиняющимся Бозе — Эйнштейна статистике.
В квантовой теории состояние системы частиц описывается волновой функцией или вектором состояния. Введём для описания состояния с N частицами вектор состояния YN; квадрат модуля YN, |YN|2, определяющий вероятность обнаружения N частиц, обращается, очевидно, в 1, если N достоверно известно. Это означает, что вектор состояния с любым фиксированным N нормирован на 1. Введём теперь оператор уничтожения частицы а– и оператор рождения частицы а+. По определению, а– переводит состояние с N частицами в состояние с N—1 частицей, т. е.
(3)
Аналогично, оператор порождения частицы а+ переводит состояние YN в состояние с N + 1 частицей:
, (4)
[множители в (3) и в (4) вводятся именно для выполнения условия нормировки: |YN|2= 1]. В частности, при N = 0 а+Y0 = Y1, где Y0 — вектор состояния, характеризующий вакуум; т. е. одночастичное состояние получается в результате порождения из «вакуума» одной частицы. Однако а–Y0 = 0, поскольку невозможно уничтожить частицу в состоянии, в котором частиц нет; это равенство можно считать определением вакуума. Вакуумное состояние Y0 имеет в К. т. п. особое значение, т.к. из него при помощи операторов а+ можно получить любое состояние. Действительно, в рассматриваемом случае (когда состояние всей системы определяется только числом частиц)
,
, (5)
……………………………………
Легко показать, что порядок действия операторов а– и а+ не безразличен. Действительно, а–(а+Y0) = а–Y1 = Y0, в то время как а+(а–Y0) = 0. Т. о., (a–a+ — a+a–)Y0 = Y0, или
a–a+—a+a– = 1, (6)
т. е. операторы а+ и а– являются непереставимыми (некоммутирующими). Соотношения типа (6), устанавливающие связь между действием двух операторов, взятых в различном порядке называется перестановочными соотношениями, или коммутационными соотношениями для этих операторов, а выражения вида — коммутаторами операторов и .
Если учесть, что частицы могут находиться в различных состояниях, то, записывая операторы порождения и уничтожения, надо дополнительно указывать, к какому состоянию частицы эти операторы относятся. В квантовой теории состояния задаются набором квантовых чисел, определяющих энергию, спин и др. физические величины; для простоты обозначим всю совокупность квантовых чисел одним индексом n: так, а+n обозначает оператор рождения частицы в состоянии с набором квантовых чисел n. Средние числа частиц, находящихся в состояниях, соответствующих различным n, называются числами заполнения этих состояний.
Рассмотрим выражение a–n а+mY0. Сначала на Y0 действует «ближайший» к нему оператор а+m; это отвечает порождению частицы в состоянии m. Если n = m, то последующее действие оператора а–n приводит опять к Y0, т. е. а–n а+n Y0 = Y0. Если n ¹ m, то а–n а+m Y0 = 0, поскольку невозможно уничтожение таких частиц, которых нет (оператор а–n описывает уничтожение частиц в таких состояниях n, каких не возникает при действии a+n на Y0). С учетом различных состоянии частиц перестановочные соотношения для операторов рождения и уничтожения имеют следующий вид:
а–nа–m —а–m а–n = 0,
а+nа+m—а+m а+n = 0 (7)
Однако существуют поля, для которых связь между произведением операторов рождения и уничтожения, взятых в различном порядке, имеет др. вид: знак минус в (7) заменяется на плюс (это называется заменой коммутаторов на антикоммутаторы),
(8)
а–nа–m —а–m а–n = 0, а+nа+m—а+m а+n = 0
[эти соотношения также относят к классу перестановочных соотношений, хотя они и не имеют вида (6)]. Операторы, подчиняющиеся соотношениям (8), необходимо вводить для полей, кванты которых имеют полуцелый спин (т. е. являются фермионами) и вследствие этого подчиняются Паули принципу, согласно которому в системе таких частиц (например, электронов) невозможно существование двух или более частиц в одинаковых состояниях (в состояниях с одинаковым набором всех квантовых чисел). Действительно, построив вектор состояния, содержащего 2 частицы (двухчастичного состояния), а+m а+n Y0, нетрудно убедиться [учитывая (8)], что при n = m он равен самому себе с обратным знаком; но это возможно только для величины, тождественно равной нулю. Т. о., если операторы рождения и уничтожения частиц удовлетворяют перестановочным соотношениям (8), то состояния с двумя (или более) частицами, имеющими одинаковые квантовые числа, автоматически исключаются. Такие частицы подчиняются Ферми — Дирака статистике. Для полей же, кванты которых имеют целый спин, операторы рождения и уничтожения частиц удовлетворяют соотношениям (7); здесь возможны состояния с произвольным числом частиц, имеющих одинаковые квантовые числа.
Наличие двух типов перестановочных соотношений имеет фундаментальное значение, поскольку оно определяет два возможных типа статистик.
Необходимость введения некоммутирующих операторов для описания систем с переменным числом частиц — типичная черта вторичного квантования.
Заметим, что «первичное квантование» также можно рассматривать как переход от классической механики, в которой координаты q и импульсы p являются обычными числами (т. е., конечно, qp = pq), к такой теории, в которой q и р заменяются некоммутирующими операторами: . Переход от классической теории поля к квантовой (например, в электродинамике) производится аналогичным методом, но только роль координат (и импульсов) должны при этом играть величины, описывающие распределение поля во всём пространстве и во все моменты времени. Так, в классической электродинамике поле определяется значениями напряжённостей электрического Е и магнитного Н полей (как функций координат и времени). При переходе к квантовой теории Е и Н становятся операторами, которые не коммутируют с оператором числа фотонов в поле.
В квантовой механике доказывается, что если 2 каких-либо оператора не коммутируют, то соответствующие им физические величины не могут одновременно иметь точные значения. Отсюда следует, что не существует такого состояния электромагнитного поля, в котором были бы одновременно точно определёнными напряжённости поля и число фотонов. Если, в силу физических условий, точно известно число фотонов, то совершенно неопределёнными (способными принимать любые значения) оказываются напряжённости полей. Если же известны точно эти напряжённости, то неопределенным является число фотонов. Вытекающая отсюда невозможность одновременно положить равными нулю напряжённости поля и число фотонов и является физической причиной того, что вакуумное состояние не представляет собой просто отсутствие поля, а сохраняет важные физические свойства.