Kniga-Online.club
» » » » БСЭ БСЭ - Большая Советская Энциклопедия (УП)

БСЭ БСЭ - Большая Советская Энциклопедия (УП)

Читать бесплатно БСЭ БСЭ - Большая Советская Энциклопедия (УП). Жанр: Энциклопедии издательство неизвестно, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

  При испытаниях образцов, вырезанных из изотропного материала по разным направлениям, получаются одни и те же значения Е, G и n. В среднем изотропны многие конструкционные металлы и сплавы, резина, пластмассы, стекло, керамика, бетон. Для анизотропного материала (древесина, кристаллы, армированные бетон и пластики, слоистые горные породы и др.) упругие свойства зависят от направления. Напряжение в любой точке тела характеризуется шестью величинами – компонентами напряжений: нормальными напряжениями sхх , sуу , szz и касательными напряжениями sху , sуz , szx , Причём sху = sух и т.д. Деформация в любой точке тела также характеризуется шестью величинами – компонентами деформаций: относительными удлинениями eхх , eуу , ezz и сдвигами eху , eуz , ezx , Причём eху = eух и т.д.

  Основным физическим законом У. т. является обобщённый Гука закон , согласно которому нормальные напряжения линейно зависят от деформаций. Для изотропных материалов эти зависимости имеют вид:

  , , ,

, , , (1)

  где  - средняя (гидростатическая) деформация, l и m = G – Ламе постоянные . Т. о., упругие свойства изотропного материала характеризуются двумя постоянными l и m или какими-нибудь выраженными через них двумя модулями упругости .

  Равенство (1) можно также представить в виде

  ,..., (2)

, …,

  где   среднее (гидростатическое) напряжение, К – модуль всестороннего сжатия.

  Для анизотропного материала 6 зависимостей между компонентами напряжений и деформаций имеют вид:

   (3)

 ...............................................................

  Из входящих сюда 36 коэффициентов cij называются модулями упругости, 21 между собой независимы и характеризуют упругие свойства анизотропного материала.

  Для нелинейного упругого изотропного материала в равенствах (2) всюду вместо m входит коэффициент , а соотношение  заменяется равенством , где величина eu называется интенсивностью деформации, а функции Ф и f , универсальные для данного материала, определяются из опытов. Когда Ф (eu ) достигает некоторого критического значения, возникают пластические деформации. Законы пластичности при пропорциональном возрастании нагрузок или напряжений (простое нагружение) имеют тот же вид, но с др. значениями функций Ф и f (законы теории малых упруго-пластических деформаций), а при уменьшении напряжений (разгрузке) имеют место соотношения (1) или (2), в которых вместо sij и eij подставляются их приращения (разности двух текущих значений).

  Математическая задача У. т. при равновесии состоит в том, чтобы, зная действующие внешние силы (нагрузки) и т. н. граничные условия, определить значения в любой точке тела компоненты напряжений и деформаций, а также компоненты u x , u y , и z ; вектора перемещения каждой частицы тела, т. е. определить эти 15 величин в виде функций от координат x , у, z точек тела. Исходными для решения этой задачи являются дифференциальные уравнения равновесия:

  ,

, (4)

  где r – плотность материала, XYZ – проекции на координатные оси действующей на каждую частицу тела массовой силы (например, силы тяжести), отнесённые к массе этой частицы.

  К трём уравнениям равновесия присоединяются 6 равенств (1) в случае изотропного тела и ещё 6 равенств вида:

  , …, , …, (5)

  устанавливающих зависимости между компонентами деформаций и перемещений.

  Когда на часть S 1 граничной поверхности тела действуют заданные поверхностные силы (например, силы контактного взаимодействия), проекции которых, отнесённые к единице площади, равны F x , F y , F z , а для части S 2 этой поверхности заданы перемещения её точек jх ,, jz , граничные условия имеют вид:

   (на S 1 ) (6)

  , ,  (на S 2 ) (7)

  где l 1 , l 2 , l 3 косинусы углов между нормалью к поверхности и координатными осями. Первые условия означают, что искомые напряжения должны удовлетворять на границе S 1 трём равенствам (6), а вторые – что искомые перемещения должны удовлетворять на границе S 2 равенствам (7); в частном случае может быть jx = jy = jz = 0 (часть поверхности S 2 жестко закреплена). Например, в задаче о равновесии плотины массовая сила – сила тяжести, поверхность S 2 подошвы плотины неподвижна, на остальной поверхности S 1 действуют силы: напор воды, давление различных надстроек, транспортных средств и т.д.

  В общем случае поставленная задача представляет собой пространственную задачу У. т., решение которой трудно осуществимо. Точные аналитические решения имеются лишь для некоторых частных задач: об изгибе и кручении бруса, о контактном взаимодействии двух тел, о концентрации напряжений, о действии силы на вершину конического тела и др. Т. к. уравнения У. т. являются линейными, то решение задачи о совместном действии двух систем сил получается путём суммирования решений для каждой из систем сил, действующих раздельно (принцип линейной суперпозиции). В частности, если для какого-нибудь тела найдено решение при действии сосредоточенной силы в какой-либо произвольной точке тела, то решение задачи при произвольном распределении нагрузок получается путём суммирования (интегрирования). Такие решения, называются Грина функциями , получены лишь для небольшого числа тел (неограниченное пространство, полупространство, ограниченное плоскостью, и некоторые др.). Предложен ряд аналитических методов решения пространственной задачи У. т.: вариационные методы (Ритца, Бубнова – Галёркина, Кастильяно и др.), метод упругих потенциалов, метод Бетти и др. Интенсивно разрабатываются численные методы (конечно-разностные, метод конечных элементов и др.). Разработка общих методов решений пространственной задачи У. т. – одна из наиболее актуальных проблем У. т.

  При решении плоских задач У. т. (когда один из компонентов перемещения равен нулю, а два других зависят только от двух координат) широкое применение находят методы теории функций комплексного переменного. Для стержней, пластин и оболочек, часто используемых в технике, найдены приближённые решения многих практически важных задач на основе некоторых упрощающих предположений. Применительно к этим объектам специфический интерес представляют задачи об устойчивости равновесия (см. Устойчивость упругих систем ).

  В задаче термоупругости определяются напряжения и деформации, возникающие вследствие неоднородного распределения температуры. При математической постановке этой задачи в правую часть первых трёх уравнений (1) добавляется член , где a – коэффициент линейного теплового расширения, T (x 1 , x 2 , x 3 ) заданное поле температуры. Аналогичным образом строится теория электромагнитоупругости и упругости подвергаемых облучению тел.

  Большой практических интерес представляют задачи У. т. для неоднородных тел. В этих задачах коэффициент l, m в уравнении (1) являются не константами, а функциями координат, определяющими поле упругих свойств тела, которое иногда задают статистически (в виде некоторых функций распределения). Применительно к этим задачам разрабатываются статистические методы У. т., отражающие статистическую природу свойств поликристаллических тел.

  В динамических задачах У. т. искомые величины являются функциями координат и времени. Исходными для математического решения этих задач являются дифференциальные уравнения движения, отличающиеся от уравнений (4) тем, что правые части вместо нуля содержат инерционные члены   и т.д. К исходным уравнениям должны также присоединяться уравнения (1), (5) и, кроме граничных условий (6), (7), ещё задаваться начальные условия, определяющие, например, распределение перемещении и скоростей частиц тела в начальный момент времени. К этому типу относятся задачи о колебаниях конструкций и сооружений, в которых могут определяться формы колебаний и их возможные смены, амплитуды колебаний и их нарастание или убывание во времени, резонансные режимы, динамические напряжения, методы возбуждения и гашения колебаний и др., а также задачи о распространении упругих волн (сейсмические волны и их воздействие на конструкции и сооружения, волны, возникающие при взрывах и ударах, термоупругие волны и т.д.).

Перейти на страницу:

БСЭ БСЭ читать все книги автора по порядку

БСЭ БСЭ - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Большая Советская Энциклопедия (УП) отзывы

Отзывы читателей о книге Большая Советская Энциклопедия (УП), автор: БСЭ БСЭ. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*